Normalized defining polynomial
\( x^{20} + 26 x^{18} + 250 x^{16} + 1067 x^{14} + 1588 x^{12} - 2479 x^{10} - 11776 x^{8} - 14727 x^{6} + \cdots + 361 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[4, 8]$ |
| |
| Discriminant: |
\(4014163686424571853629440000000000\)
\(\medspace = 2^{20}\cdot 5^{10}\cdot 19^{6}\cdot 1699^{4}\)
|
| |
| Root discriminant: | \(47.88\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(5\), \(19\), \(1699\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{396336765148673}a^{18}-\frac{2636541828650}{396336765148673}a^{16}-\frac{83105492813617}{396336765148673}a^{14}-\frac{24005712035949}{396336765148673}a^{12}+\frac{157716436612237}{396336765148673}a^{10}-\frac{68680251329648}{396336765148673}a^{8}+\frac{72639693679119}{396336765148673}a^{6}+\frac{79908139679898}{396336765148673}a^{4}+\frac{158374222590161}{396336765148673}a^{2}+\frac{8893071598967}{20859829744667}$, $\frac{1}{396336765148673}a^{19}-\frac{2636541828650}{396336765148673}a^{17}-\frac{83105492813617}{396336765148673}a^{15}-\frac{24005712035949}{396336765148673}a^{13}+\frac{157716436612237}{396336765148673}a^{11}-\frac{68680251329648}{396336765148673}a^{9}+\frac{72639693679119}{396336765148673}a^{7}+\frac{79908139679898}{396336765148673}a^{5}+\frac{158374222590161}{396336765148673}a^{3}+\frac{8893071598967}{20859829744667}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{2829904}{245541883}a^{18}+\frac{69795953}{245541883}a^{16}+\frac{614868062}{245541883}a^{14}+\frac{2214317531}{245541883}a^{12}+\frac{1680273198}{245541883}a^{10}-\frac{8754796095}{245541883}a^{8}-\frac{21398354434}{245541883}a^{6}-\frac{15436714210}{245541883}a^{4}-\frac{1830561005}{245541883}a^{2}+\frac{37360538}{12923257}$, $\frac{8008289538745}{396336765148673}a^{18}+\frac{193484355401218}{396336765148673}a^{16}+\frac{16\cdots 47}{396336765148673}a^{14}+\frac{54\cdots 73}{396336765148673}a^{12}+\frac{22\cdots 46}{396336765148673}a^{10}-\frac{25\cdots 21}{396336765148673}a^{8}-\frac{48\cdots 63}{396336765148673}a^{6}-\frac{23\cdots 66}{396336765148673}a^{4}+\frac{21\cdots 50}{396336765148673}a^{2}+\frac{80192588580589}{20859829744667}$, $\frac{2474023273527}{396336765148673}a^{18}+\frac{59170240446863}{396336765148673}a^{16}+\frac{495531711699290}{396336765148673}a^{14}+\frac{16\cdots 42}{396336765148673}a^{12}+\frac{606830466765102}{396336765148673}a^{10}-\frac{73\cdots 82}{396336765148673}a^{8}-\frac{14\cdots 84}{396336765148673}a^{6}-\frac{77\cdots 78}{396336765148673}a^{4}+\frac{266026269252461}{396336765148673}a^{2}+\frac{49538125591440}{20859829744667}$, $\frac{2800984729529}{396336765148673}a^{18}+\frac{70624218262711}{396336765148673}a^{16}+\frac{644993371848368}{396336765148673}a^{14}+\frac{24\cdots 44}{396336765148673}a^{12}+\frac{25\cdots 46}{396336765148673}a^{10}-\frac{88\cdots 10}{396336765148673}a^{8}-\frac{26\cdots 00}{396336765148673}a^{6}-\frac{21\cdots 40}{396336765148673}a^{4}-\frac{20\cdots 92}{396336765148673}a^{2}+\frac{102261076217997}{20859829744667}$, $\frac{3729541911129}{396336765148673}a^{18}+\frac{93474401554976}{396336765148673}a^{16}+\frac{845214112108156}{396336765148673}a^{14}+\frac{31\cdots 79}{396336765148673}a^{12}+\frac{30\cdots 62}{396336765148673}a^{10}-\frac{11\cdots 80}{396336765148673}a^{8}-\frac{32\cdots 80}{396336765148673}a^{6}-\frac{25\cdots 69}{396336765148673}a^{4}-\frac{34\cdots 41}{396336765148673}a^{2}+\frac{49916737117560}{20859829744667}$, $\frac{2637504001528}{396336765148673}a^{18}+\frac{64897229354787}{396336765148673}a^{16}+\frac{570262541773829}{396336765148673}a^{14}+\frac{20\cdots 93}{396336765148673}a^{12}+\frac{15\cdots 24}{396336765148673}a^{10}-\frac{80\cdots 96}{396336765148673}a^{8}-\frac{20\cdots 42}{396336765148673}a^{6}-\frac{14\cdots 09}{396336765148673}a^{4}-\frac{678233680818929}{396336765148673}a^{2}+\frac{107189345521719}{20859829744667}$, $\frac{4485725705619}{396336765148673}a^{18}+\frac{111794386843450}{396336765148673}a^{16}+\frac{10\cdots 51}{396336765148673}a^{14}+\frac{37\cdots 16}{396336765148673}a^{12}+\frac{31\cdots 67}{396336765148673}a^{10}-\frac{14\cdots 65}{396336765148673}a^{8}-\frac{37\cdots 01}{396336765148673}a^{6}-\frac{26\cdots 51}{396336765148673}a^{4}-\frac{488095885003577}{396336765148673}a^{2}+\frac{105475753390074}{20859829744667}$, $\frac{3370881320007}{396336765148673}a^{18}+\frac{85495004598814}{396336765148673}a^{16}+\frac{786956446154242}{396336765148673}a^{14}+\frac{30\cdots 15}{396336765148673}a^{12}+\frac{32\cdots 00}{396336765148673}a^{10}-\frac{10\cdots 76}{396336765148673}a^{8}-\frac{31\cdots 85}{396336765148673}a^{6}-\frac{27\cdots 32}{396336765148673}a^{4}-\frac{52\cdots 75}{396336765148673}a^{2}+\frac{90005092394930}{20859829744667}$, $\frac{2838198079505}{396336765148673}a^{18}+\frac{62277531304484}{396336765148673}a^{16}+\frac{434288317423642}{396336765148673}a^{14}+\frac{731621706228947}{396336765148673}a^{12}-\frac{28\cdots 02}{396336765148673}a^{10}-\frac{89\cdots 14}{396336765148673}a^{8}+\frac{19\cdots 90}{396336765148673}a^{6}+\frac{19\cdots 34}{396336765148673}a^{4}+\frac{85\cdots 40}{396336765148673}a^{2}-\frac{106613783891142}{20859829744667}$, $\frac{31\cdots 24}{396336765148673}a^{19}+\frac{45\cdots 88}{396336765148673}a^{18}+\frac{87\cdots 96}{396336765148673}a^{17}+\frac{12\cdots 00}{396336765148673}a^{16}+\frac{96\cdots 02}{396336765148673}a^{15}+\frac{14\cdots 88}{396336765148673}a^{14}+\frac{54\cdots 98}{396336765148673}a^{13}+\frac{79\cdots 70}{396336765148673}a^{12}+\frac{16\cdots 60}{396336765148673}a^{11}+\frac{24\cdots 84}{396336765148673}a^{10}+\frac{28\cdots 48}{396336765148673}a^{9}+\frac{42\cdots 20}{396336765148673}a^{8}+\frac{25\cdots 44}{396336765148673}a^{7}+\frac{37\cdots 88}{396336765148673}a^{6}+\frac{91\cdots 50}{396336765148673}a^{5}+\frac{13\cdots 40}{396336765148673}a^{4}-\frac{29\cdots 18}{396336765148673}a^{3}-\frac{43\cdots 08}{396336765148673}a^{2}-\frac{27\cdots 92}{20859829744667}a-\frac{40\cdots 47}{20859829744667}$, $\frac{34\cdots 65}{396336765148673}a^{19}-\frac{15\cdots 09}{396336765148673}a^{18}+\frac{91\cdots 30}{396336765148673}a^{17}-\frac{40\cdots 92}{396336765148673}a^{16}+\frac{88\cdots 77}{396336765148673}a^{15}-\frac{39\cdots 50}{396336765148673}a^{14}+\frac{38\cdots 53}{396336765148673}a^{13}-\frac{17\cdots 08}{396336765148673}a^{12}+\frac{62\cdots 63}{396336765148673}a^{11}-\frac{27\cdots 06}{396336765148673}a^{10}-\frac{74\cdots 24}{396336765148673}a^{9}+\frac{32\cdots 94}{396336765148673}a^{8}-\frac{42\cdots 23}{396336765148673}a^{7}+\frac{18\cdots 94}{396336765148673}a^{6}-\frac{59\cdots 46}{396336765148673}a^{5}+\frac{26\cdots 09}{396336765148673}a^{4}-\frac{34\cdots 04}{396336765148673}a^{3}+\frac{14\cdots 05}{396336765148673}a^{2}-\frac{34\cdots 20}{20859829744667}a+\frac{15\cdots 12}{20859829744667}$
|
| |
| Regulator: | \( 531384738.658 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{8}\cdot 531384738.658 \cdot 1}{2\cdot\sqrt{4014163686424571853629440000000000}}\cr\approx \mathstrut & 0.162982311266 \end{aligned}\] (assuming GRH)
Galois group
$C_2^9.D_5\wr C_2$ (as 20T760):
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for $C_2^9.D_5\wr C_2$ |
| Character table for $C_2^9.D_5\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.3256446753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | 20.4.358950742275544609437706240000000000.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.10.0.1}{10} }^{2}$ | R | ${\href{/padicField/7.10.0.1}{10} }^{2}$ | ${\href{/padicField/11.10.0.1}{10} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{5}$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }^{3}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{6}$ | R | ${\href{/padicField/23.10.0.1}{10} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{7}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.5.0.1}{5} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.10.0.1}{10} }{,}\,{\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{6}$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.4.0.1}{4} }^{3}$ | ${\href{/padicField/53.10.0.1}{10} }^{2}$ | ${\href{/padicField/59.5.0.1}{5} }^{2}{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.10.2.20a18.2 | $x^{20} + 2 x^{17} + 2 x^{16} + 2 x^{15} + 4 x^{13} + 5 x^{12} + 4 x^{11} + 5 x^{10} + 4 x^{9} + 6 x^{8} + 6 x^{7} + 5 x^{6} + 4 x^{5} + 3 x^{4} + 4 x^{3} + 7 x^{2} + 2 x + 3$ | $2$ | $10$ | $20$ | 20T340 | not computed |
|
\(5\)
| 5.5.2.5a1.2 | $x^{10} + 8 x^{6} + 6 x^{5} + 16 x^{2} + 24 x + 14$ | $2$ | $5$ | $5$ | $C_{10}$ | $$[\ ]_{2}^{5}$$ |
| 5.5.2.5a1.2 | $x^{10} + 8 x^{6} + 6 x^{5} + 16 x^{2} + 24 x + 14$ | $2$ | $5$ | $5$ | $C_{10}$ | $$[\ ]_{2}^{5}$$ | |
|
\(19\)
| 19.1.2.1a1.1 | $x^{2} + 19$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 19.1.2.1a1.2 | $x^{2} + 38$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 19.2.1.0a1.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 19.2.1.0a1.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 19.2.2.2a1.2 | $x^{4} + 36 x^{3} + 328 x^{2} + 72 x + 23$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 19.4.1.0a1.1 | $x^{4} + 2 x^{2} + 11 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 19.2.2.2a1.2 | $x^{4} + 36 x^{3} + 328 x^{2} + 72 x + 23$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(1699\)
| $\Q_{1699}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{1699}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1699}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1699}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ |