Normalized defining polynomial
\( x^{20} - 8 x^{19} + 28 x^{18} - 71 x^{17} + 115 x^{16} + 39 x^{15} - 838 x^{14} + 2849 x^{13} - 5828 x^{12} + 6380 x^{11} + 3122 x^{10} - 32134 x^{9} + 80489 x^{8} - 120236 x^{7} + 96732 x^{6} + 38489 x^{5} - 284352 x^{4} + 543530 x^{3} - 660153 x^{2} + 558756 x - 241893 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(39917238394347243966013035143293=13^{5}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{17} + \frac{1}{3} a^{16} + \frac{1}{3} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{1368001143889483776868152681710905121392925529867} a^{19} - \frac{70064908072796477461888896095038822678198800434}{1368001143889483776868152681710905121392925529867} a^{18} - \frac{306307837323441827522566938003648435312167477309}{1368001143889483776868152681710905121392925529867} a^{17} - \frac{663461125047688485711925450297211509787084009291}{1368001143889483776868152681710905121392925529867} a^{16} - \frac{447925754048626176530628439463807971948557486380}{1368001143889483776868152681710905121392925529867} a^{15} - \frac{25110814267109161719052711177586685721157162040}{152000127098831530763128075745656124599213947763} a^{14} - \frac{27035800562593824546078380382718201899446860390}{72000060204709672466744877984784480073311869993} a^{13} + \frac{318976931413209100797182504804297594437213357139}{1368001143889483776868152681710905121392925529867} a^{12} - \frac{7143645948160733841657716738956917298950788135}{72000060204709672466744877984784480073311869993} a^{11} + \frac{395887179971362703031699265496495945689363854743}{1368001143889483776868152681710905121392925529867} a^{10} + \frac{203231637087108342071369766902534136436353873569}{1368001143889483776868152681710905121392925529867} a^{9} - \frac{656886636429357080512240826345195002710310952749}{1368001143889483776868152681710905121392925529867} a^{8} - \frac{449760045403701354355319765770756724723617634125}{1368001143889483776868152681710905121392925529867} a^{7} - \frac{230353117790257730803988881444389018182821281998}{1368001143889483776868152681710905121392925529867} a^{6} - \frac{144640804628186864266890715887884935101800002225}{456000381296494592289384227236968373797641843289} a^{5} - \frac{96948243937849945560041112927081732808332539647}{1368001143889483776868152681710905121392925529867} a^{4} + \frac{203399098338938178033532679365291321445229546953}{456000381296494592289384227236968373797641843289} a^{3} + \frac{654185860931599499775376639734852722423052791846}{1368001143889483776868152681710905121392925529867} a^{2} + \frac{26447976401547166377890919116414185098722574907}{152000127098831530763128075745656124599213947763} a + \frac{86031978372124093579462164366073778569276590}{288425288612583549835157638986064752560178269}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 69539894.5106 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 76 conjugacy class representatives for t20n436 are not computed |
| Character table for t20n436 is not computed |
Intermediate fields
| 5.5.160801.1, 10.6.336140500813.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20$ | $20$ | $20$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 401 | Data not computed | ||||||