Normalized defining polynomial
\( x^{20} - 3 x^{19} - 25 x^{18} + 85 x^{17} + 390 x^{16} - 619 x^{15} - 3918 x^{14} + 385 x^{13} + 34925 x^{12} + 29720 x^{11} - 270083 x^{10} - 443136 x^{9} + 1143615 x^{8} + 3870405 x^{7} + 873000 x^{6} - 14910222 x^{5} - 18671249 x^{4} + 17902740 x^{3} + 5924040 x^{2} - 41740760 x + 18411920 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(396107830343483954099825714111328125=5^{15}\cdot 7^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{9} + \frac{2}{5} a^{4}$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{5}$, $\frac{1}{10} a^{11} - \frac{3}{10} a^{6} - \frac{1}{2} a$, $\frac{1}{50} a^{12} + \frac{1}{50} a^{11} + \frac{1}{25} a^{10} - \frac{1}{25} a^{9} - \frac{23}{50} a^{7} + \frac{7}{50} a^{6} - \frac{8}{25} a^{5} + \frac{8}{25} a^{4} - \frac{1}{5} a^{3} - \frac{3}{10} a^{2} - \frac{3}{10} a + \frac{2}{5}$, $\frac{1}{50} a^{13} + \frac{1}{50} a^{11} - \frac{2}{25} a^{10} + \frac{1}{25} a^{9} - \frac{3}{50} a^{8} - \frac{1}{5} a^{7} + \frac{7}{50} a^{6} + \frac{11}{25} a^{5} - \frac{3}{25} a^{4} - \frac{1}{10} a^{3} - \frac{3}{10} a - \frac{2}{5}$, $\frac{1}{50} a^{14} - \frac{1}{50} a^{9} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{11}{50} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{50} a^{15} - \frac{1}{50} a^{10} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{19}{50} a^{5} + \frac{2}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{750} a^{16} - \frac{1}{125} a^{15} - \frac{1}{750} a^{14} - \frac{1}{150} a^{12} - \frac{7}{250} a^{11} - \frac{17}{375} a^{10} + \frac{7}{250} a^{9} + \frac{1}{25} a^{8} + \frac{3}{50} a^{7} - \frac{57}{250} a^{6} + \frac{36}{125} a^{5} - \frac{43}{250} a^{4} + \frac{12}{25} a^{3} + \frac{9}{50} a^{2} + \frac{1}{5} a - \frac{8}{75}$, $\frac{1}{750} a^{17} - \frac{7}{750} a^{15} - \frac{1}{125} a^{14} - \frac{1}{150} a^{13} - \frac{1}{125} a^{12} + \frac{7}{150} a^{11} + \frac{9}{250} a^{10} + \frac{11}{125} a^{9} - \frac{1}{10} a^{8} - \frac{6}{125} a^{7} - \frac{13}{50} a^{6} - \frac{11}{250} a^{5} + \frac{1}{125} a^{4} + \frac{23}{50} a^{3} + \frac{9}{50} a^{2} + \frac{59}{150} a - \frac{11}{25}$, $\frac{1}{1500} a^{18} - \frac{1}{1500} a^{17} - \frac{1}{1500} a^{16} - \frac{1}{300} a^{15} + \frac{1}{150} a^{14} - \frac{1}{1500} a^{13} - \frac{1}{375} a^{12} + \frac{1}{1500} a^{11} + \frac{1}{20} a^{10} - \frac{27}{500} a^{8} + \frac{1}{250} a^{7} - \frac{23}{500} a^{6} - \frac{27}{100} a^{5} + \frac{6}{25} a^{4} + \frac{59}{300} a^{2} + \frac{2}{15} a$, $\frac{1}{327402223219003196477169778141414133372013922241367000} a^{19} - \frac{15584080411694548978213803155564746338559288382451}{109134074406334398825723259380471377790671307413789000} a^{18} - \frac{47955363373972546031008523350277261058488542583057}{109134074406334398825723259380471377790671307413789000} a^{17} + \frac{60686203032277404437587616466034304780477131411043}{327402223219003196477169778141414133372013922241367000} a^{16} - \frac{110743799317781991638053470913852051388528875320011}{27283518601583599706430814845117844447667826853447250} a^{15} + \frac{12777372863247671935080679446778107492787865844881}{65480444643800639295433955628282826674402784448273400} a^{14} - \frac{170464582069342742066031807048338457511528247824301}{27283518601583599706430814845117844447667826853447250} a^{13} - \frac{1315514954015573136852210875753679552057900591114919}{327402223219003196477169778141414133372013922241367000} a^{12} - \frac{10797083064837634309303212050780380467933256427745313}{327402223219003196477169778141414133372013922241367000} a^{11} - \frac{1197387471183801661182259950548154382255545800895529}{163701111609501598238584889070707066686006961120683500} a^{10} + \frac{8491200304077981130655151578608513584363764459995971}{109134074406334398825723259380471377790671307413789000} a^{9} - \frac{2560428659339021638696928332098583913712328068616157}{54567037203167199412861629690235688895335653706894500} a^{8} - \frac{34002277412825135777047389998453894281280303427326943}{109134074406334398825723259380471377790671307413789000} a^{7} - \frac{25646571641892810431047740251833752316458200807839431}{109134074406334398825723259380471377790671307413789000} a^{6} - \frac{21857154018228101006648854501174903249437114160938083}{54567037203167199412861629690235688895335653706894500} a^{5} - \frac{6187122078087959327828572231682162182550787039820331}{54567037203167199412861629690235688895335653706894500} a^{4} + \frac{25926922226486490900836996688220649889090336384681863}{65480444643800639295433955628282826674402784448273400} a^{3} - \frac{102436410279427691187052280528941408592556693293157}{2182681488126687976514465187609427555813426148275780} a^{2} - \frac{1005673220298093478685195806124681108266121824079771}{8185055580475079911929244453535353334300348056034175} a - \frac{2329199463689710688841940814985488739786208843543348}{8185055580475079911929244453535353334300348056034175}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3188661065.882411 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.6125.1, 5.1.1830125.1, 10.2.16746787578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | R | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $11$ | 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |