Normalized defining polynomial
\( x^{20} + 24 x^{18} - 188 x^{16} - 9328 x^{14} - 69680 x^{12} + 126848 x^{10} + 3090432 x^{8} + 10103808 x^{6} + 10698496 x^{4} + 4333568 x^{2} + 541696 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3956448137628099441486726576701509206016=2^{40}\cdot 11^{16}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{64} a^{11} - \frac{1}{32} a^{9} - \frac{1}{16} a^{7} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{64} a^{12}$, $\frac{1}{128} a^{13} - \frac{1}{16} a^{7} - \frac{1}{8} a^{5} - \frac{1}{2} a$, $\frac{1}{2944} a^{14} - \frac{7}{1472} a^{12} - \frac{3}{368} a^{10} + \frac{3}{184} a^{8} - \frac{7}{184} a^{6} + \frac{3}{92} a^{4}$, $\frac{1}{5888} a^{15} - \frac{7}{2944} a^{13} - \frac{3}{736} a^{11} - \frac{17}{736} a^{9} + \frac{1}{23} a^{7} + \frac{3}{184} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{641792} a^{16} + \frac{9}{80224} a^{14} + \frac{1027}{160448} a^{12} - \frac{459}{80224} a^{10} - \frac{185}{20056} a^{8} - \frac{45}{20056} a^{6} + \frac{559}{5014} a^{4} + \frac{41}{218} a^{2} - \frac{38}{109}$, $\frac{1}{1283584} a^{17} + \frac{9}{160448} a^{15} + \frac{1027}{320896} a^{13} - \frac{459}{160448} a^{11} + \frac{2137}{80224} a^{9} - \frac{45}{40112} a^{7} + \frac{559}{10028} a^{5} - \frac{17}{109} a^{3} + \frac{71}{218} a$, $\frac{1}{3043045399296512} a^{18} + \frac{51972421}{1521522699648256} a^{16} + \frac{63560772237}{760761349824128} a^{14} - \frac{2317905019607}{380380674912064} a^{12} + \frac{159522650253}{95095168728016} a^{10} - \frac{1136506093793}{47547584364008} a^{8} + \frac{1015340937777}{23773792182004} a^{6} - \frac{303907716271}{11886896091002} a^{4} - \frac{16763281763}{258410784587} a^{2} + \frac{102463329065}{258410784587}$, $\frac{1}{6086090798593024} a^{19} + \frac{51972421}{3043045399296512} a^{17} + \frac{63560772237}{1521522699648256} a^{15} - \frac{2317905019607}{760761349824128} a^{13} + \frac{159522650253}{190190337456032} a^{11} - \frac{1136506093793}{95095168728016} a^{9} + \frac{1015340937777}{47547584364008} a^{7} + \frac{5335632612959}{47547584364008} a^{5} + \frac{224884221061}{1033643138348} a^{3} - \frac{77973727761}{258410784587} a$
Class group and class number
$C_{2}\times C_{2}\times C_{6}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46859529448.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2560 |
| The 28 conjugacy class representatives for t20n254 |
| Character table for t20n254 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.2670699013250048.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |