Normalized defining polynomial
\( x^{20} - 295 x^{16} - 8 x^{15} - 31400 x^{13} + 7910 x^{12} - 720 x^{11} - 1232184 x^{10} + 388800 x^{9} - 34190 x^{8} + 760 x^{7} + 50393340 x^{6} + 833920 x^{5} + 9025 x^{4} + 2529659160 x^{3} - 1269028620 x^{2} + 111115800 x + 13944661505 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3923882404992640000000000000000000000=2^{28}\cdot 5^{22}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{12} a^{16} - \frac{1}{12} a^{15} + \frac{1}{12} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{12} a^{10} + \frac{5}{12} a^{9} - \frac{1}{4} a^{8} - \frac{1}{12} a^{7} - \frac{5}{12} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{5}{12} a^{2} - \frac{1}{12} a - \frac{1}{3}$, $\frac{1}{12} a^{17} + \frac{1}{12} a^{14} - \frac{1}{4} a^{12} + \frac{1}{6} a^{11} + \frac{1}{12} a^{10} - \frac{1}{3} a^{9} + \frac{5}{12} a^{8} - \frac{1}{2} a^{7} + \frac{1}{12} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{3} a^{3} + \frac{1}{12} a^{2} + \frac{1}{12} a - \frac{1}{12}$, $\frac{1}{228} a^{18} + \frac{1}{38} a^{17} + \frac{2}{57} a^{16} - \frac{25}{228} a^{15} - \frac{1}{57} a^{14} + \frac{1}{76} a^{13} - \frac{11}{114} a^{12} + \frac{1}{12} a^{11} - \frac{2}{19} a^{10} - \frac{3}{76} a^{9} + \frac{15}{38} a^{8} + \frac{35}{228} a^{7} - \frac{29}{114} a^{6} + \frac{7}{76} a^{5} - \frac{4}{57} a^{4} + \frac{67}{228} a^{3} - \frac{43}{228} a^{2} - \frac{35}{76} a + \frac{1}{57}$, $\frac{1}{79605054305162249689302073467334798218819514482786587973657874160958747776958987953805505788} a^{19} + \frac{1050721080136009360481635169160163535076049150864305453607456018246998744843118309663671}{13267509050860374948217012244555799703136585747131097995609645693493124629493164658967584298} a^{18} - \frac{426733614976560402028031708373263786551683479444448511869864723890343158943056311446788125}{19901263576290562422325518366833699554704878620696646993414468540239686944239746988451376447} a^{17} + \frac{489629011742577245979865037163045693401739551778293523391887673197238329965910672798050463}{13267509050860374948217012244555799703136585747131097995609645693493124629493164658967584298} a^{16} - \frac{115302962266964402829879469599603622633346850358856446139946605728964209703222994444147494}{2843037653755794631760788338119099936386411231528092427630638362891383849177106712635910921} a^{15} - \frac{1080803933960705375454058731798695461732238126868990577948655595254519309418925525963849028}{19901263576290562422325518366833699554704878620696646993414468540239686944239746988451376447} a^{14} + \frac{1622310633803948786771666989415024972188924759492970679512090237973135621094587216054673061}{19901263576290562422325518366833699554704878620696646993414468540239686944239746988451376447} a^{13} - \frac{338893713178897462844010215741976099054931873549086499739996784317391760776260051225065633}{39802527152581124844651036733667399109409757241393293986828937080479373888479493976902752894} a^{12} + \frac{911815883346612320444636125515160217331102978085924524471971979562684032026511745746666334}{6633754525430187474108506122277899851568292873565548997804822846746562314746582329483792149} a^{11} - \frac{810107400740685250176902766025465304583026514499478625903680621881040533677614833109934934}{19901263576290562422325518366833699554704878620696646993414468540239686944239746988451376447} a^{10} - \frac{1729545442840113872436563018236229740132297199592176126330928017414116644070534344795254963}{5686075307511589263521576676238199872772822463056184855261276725782767698354213425271821842} a^{9} - \frac{385090391807367499823098017585568928041227203835827602782221234986870496544862687349445479}{2094869850135848676034265091245652584705776696915436525622575635814703888867341788258039626} a^{8} - \frac{14064891277034037281129083575070538513279614434908681643066127798481268806378922380024337487}{39802527152581124844651036733667399109409757241393293986828937080479373888479493976902752894} a^{7} - \frac{6899504840356235722508249483745913258910950726065025404105114470077583164750604559560548646}{19901263576290562422325518366833699554704878620696646993414468540239686944239746988451376447} a^{6} - \frac{17249841804159246122151249557496085793430202867689687826178759049902915092953772074260773547}{39802527152581124844651036733667399109409757241393293986828937080479373888479493976902752894} a^{5} - \frac{8622785535007422435337995481775468891024100919124725538832741226719276760103922648038709745}{39802527152581124844651036733667399109409757241393293986828937080479373888479493976902752894} a^{4} + \frac{26682763993458657097503506814488469793400456338515385215367829488017967925051435129591979509}{79605054305162249689302073467334798218819514482786587973657874160958747776958987953805505788} a^{3} + \frac{8217174760704976300373141206814207782012944446713271118879622002417275564321849510951003575}{39802527152581124844651036733667399109409757241393293986828937080479373888479493976902752894} a^{2} + \frac{2283436605400497027566737093417969455305629056495117899311447759029945108726379877635068821}{6633754525430187474108506122277899851568292873565548997804822846746562314746582329483792149} a + \frac{5205355356534322523384227072086280938504544202650364251433070689938084706568986064799316084}{19901263576290562422325518366833699554704878620696646993414468540239686944239746988451376447}$
Class group and class number
Not computed
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{95}) \), \(\Q(\sqrt{19}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{19})\), 5.1.50000.1, 10.2.396175840000000000.1, 10.2.1980879200000000000.1, 10.2.12500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |