Normalized defining polynomial
\( x^{20} - 10 x^{19} + 35 x^{18} - 30 x^{17} - 105 x^{16} + 228 x^{15} + 90 x^{14} - 540 x^{13} + 45 x^{12} + 770 x^{11} - 1103 x^{10} + 4090 x^{9} - 65565 x^{8} + 233820 x^{7} - 714330 x^{6} + 1346964 x^{5} - 1837185 x^{4} + 1691310 x^{3} - 1027855 x^{2} + 369370 x + 176419 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(38698352640000000000000000000000=2^{38}\cdot 3^{10}\cdot 5^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{9} a^{4} + \frac{4}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{9} a + \frac{4}{9}$, $\frac{1}{9} a^{9} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{4} - \frac{1}{3} a^{2} - \frac{4}{9} a - \frac{2}{9}$, $\frac{1}{45} a^{10} + \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{2}{15} a^{5} + \frac{1}{9} a^{4} + \frac{4}{9} a^{3} - \frac{1}{3} a^{2} + \frac{8}{45}$, $\frac{1}{45} a^{11} - \frac{1}{45} a^{6} - \frac{1}{9} a^{5} - \frac{4}{9} a^{3} + \frac{1}{9} a^{2} - \frac{4}{15} a - \frac{4}{9}$, $\frac{1}{135} a^{12} - \frac{1}{27} a^{9} - \frac{2}{45} a^{7} - \frac{2}{27} a^{6} + \frac{1}{9} a^{4} - \frac{2}{27} a^{3} + \frac{7}{15} a^{2} + \frac{1}{9} a - \frac{10}{27}$, $\frac{1}{135} a^{13} + \frac{1}{135} a^{10} - \frac{2}{45} a^{8} + \frac{4}{27} a^{7} + \frac{1}{9} a^{6} - \frac{7}{45} a^{5} + \frac{4}{27} a^{4} + \frac{1}{45} a^{3} + \frac{4}{9} a^{2} - \frac{10}{27} a + \frac{1}{45}$, $\frac{1}{135} a^{14} + \frac{1}{135} a^{11} - \frac{2}{45} a^{9} + \frac{1}{27} a^{8} - \frac{1}{9} a^{7} - \frac{2}{45} a^{6} - \frac{2}{27} a^{5} - \frac{4}{45} a^{4} + \frac{1}{3} a^{3} - \frac{7}{27} a^{2} - \frac{4}{45} a - \frac{4}{9}$, $\frac{1}{135} a^{15} - \frac{1}{27} a^{9} - \frac{1}{9} a^{6} - \frac{2}{15} a^{5} + \frac{13}{27} a^{3} + \frac{1}{3} a + \frac{8}{135}$, $\frac{1}{2025} a^{16} + \frac{7}{2025} a^{15} + \frac{2}{2025} a^{14} + \frac{2}{675} a^{13} - \frac{4}{2025} a^{12} + \frac{2}{2025} a^{11} + \frac{2}{405} a^{10} - \frac{4}{675} a^{9} + \frac{64}{2025} a^{8} - \frac{67}{675} a^{7} + \frac{2}{405} a^{6} - \frac{56}{2025} a^{5} - \frac{184}{2025} a^{4} - \frac{28}{225} a^{3} + \frac{218}{2025} a^{2} + \frac{14}{2025} a - \frac{209}{2025}$, $\frac{1}{2025} a^{17} - \frac{2}{2025} a^{15} + \frac{7}{2025} a^{14} - \frac{1}{2025} a^{13} + \frac{11}{2025} a^{11} + \frac{8}{2025} a^{10} - \frac{17}{2025} a^{9} + \frac{56}{2025} a^{8} + \frac{247}{2025} a^{7} + \frac{103}{675} a^{6} - \frac{167}{2025} a^{5} - \frac{269}{2025} a^{4} - \frac{283}{2025} a^{3} - \frac{34}{675} a^{2} + \frac{413}{2025} a + \frac{443}{2025}$, $\frac{1}{194435150074454475} a^{18} - \frac{1}{21603905563828275} a^{17} + \frac{15958467430384}{64811716691484825} a^{16} - \frac{14185304382556}{7201301854609425} a^{15} - \frac{143384593225522}{64811716691484825} a^{14} - \frac{122729939320079}{64811716691484825} a^{13} - \frac{160469079467}{65137403710035} a^{12} + \frac{585301793381579}{64811716691484825} a^{11} - \frac{157901724956083}{64811716691484825} a^{10} + \frac{7775975455995371}{194435150074454475} a^{9} - \frac{3488514535902527}{64811716691484825} a^{8} - \frac{1687044407913526}{64811716691484825} a^{7} - \frac{3685397242174751}{64811716691484825} a^{6} + \frac{328863502198682}{12962343338296965} a^{5} - \frac{1760113314810326}{64811716691484825} a^{4} + \frac{30971082222303959}{64811716691484825} a^{3} - \frac{14538719596147114}{64811716691484825} a^{2} - \frac{705894851875943}{2400433951536475} a + \frac{73028095908324032}{194435150074454475}$, $\frac{1}{96155764682670641612025} a^{19} + \frac{16484}{6410384312178042774135} a^{18} - \frac{22055907410181558241}{96155764682670641612025} a^{17} + \frac{3125342273310949678}{32051921560890213870675} a^{16} - \frac{191498911348162040809}{96155764682670641612025} a^{15} - \frac{304596411670373752564}{96155764682670641612025} a^{14} - \frac{107453213850486316733}{96155764682670641612025} a^{13} - \frac{7894972685508658904}{6410384312178042774135} a^{12} - \frac{628581776906583087497}{96155764682670641612025} a^{11} + \frac{169897474465867162528}{32051921560890213870675} a^{10} - \frac{317214659835891995344}{96155764682670641612025} a^{9} - \frac{4925182674836710466732}{96155764682670641612025} a^{8} + \frac{10053397884276376530908}{96155764682670641612025} a^{7} + \frac{21843541713268894426}{237421641191779362005} a^{6} - \frac{10600219797934893006427}{96155764682670641612025} a^{5} + \frac{2007977864474949295436}{96155764682670641612025} a^{4} - \frac{41547869933297498888384}{96155764682670641612025} a^{3} - \frac{1300165519974438769847}{10683973853630071290225} a^{2} - \frac{2305462106442058832873}{32051921560890213870675} a + \frac{5892507569566103329613}{19231152936534128322405}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 142510796.64703235 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{6}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{6})\), 5.1.50000.1, 10.2.1244160000000000.14, 10.2.6220800000000000.10, 10.2.12500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |