Normalized defining polynomial
\( x^{20} - 8 x^{19} + 28 x^{18} - 44 x^{17} - 23 x^{16} + 208 x^{15} - 236 x^{14} - 272 x^{13} + 982 x^{12} - 864 x^{11} - 384 x^{10} + 1632 x^{9} - 1494 x^{8} - 384 x^{7} + 2952 x^{6} - 4416 x^{5} + 3810 x^{4} - 2064 x^{3} + 672 x^{2} - 120 x + 6 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(385918916912697952676238852096=2^{65}\cdot 3^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{15} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{12}$, $\frac{1}{15} a^{18} + \frac{1}{15} a^{17} + \frac{1}{15} a^{16} - \frac{1}{15} a^{15} + \frac{2}{15} a^{14} + \frac{2}{15} a^{13} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{3311192432118285} a^{19} + \frac{43241447050337}{3311192432118285} a^{18} - \frac{140780243202206}{1103730810706095} a^{17} - \frac{99447214374055}{662238486423657} a^{16} + \frac{740957198319101}{3311192432118285} a^{15} + \frac{168558373166006}{367910270235365} a^{14} + \frac{1360746473578387}{3311192432118285} a^{13} + \frac{295517215233191}{3311192432118285} a^{12} + \frac{998436847969}{100339164609645} a^{11} - \frac{63846863712155}{220746162141219} a^{10} + \frac{31832693933022}{73582054047073} a^{9} - \frac{416389492457414}{1103730810706095} a^{8} - \frac{69148306688326}{220746162141219} a^{7} + \frac{521892570415493}{1103730810706095} a^{6} + \frac{195493091192348}{1103730810706095} a^{5} - \frac{15322495900553}{33446388203215} a^{4} - \frac{376464103488116}{1103730810706095} a^{3} - \frac{125550362608991}{367910270235365} a^{2} + \frac{1634814423428}{20067832921929} a + \frac{145202894903587}{1103730810706095}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39401688.4754 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 28800 |
| The 41 conjugacy class representatives for t20n547 |
| Character table for t20n547 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.4.13824.1, 10.2.5283615080448.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.12.15.3 | $x^{12} - 3 x^{11} - 3 x^{9} - 3 x^{8} + 3 x^{7} - 3 x^{6} - 3 x^{4} - 3$ | $12$ | $1$ | $15$ | 12T42 | $[3/2]_{4}^{6}$ | |