Normalized defining polynomial
\( x^{20} - 3 x^{19} - x^{18} + 16 x^{17} - x^{16} - 38 x^{15} + 23 x^{14} + 84 x^{13} + 59 x^{12} - 135 x^{11} - 816 x^{10} + 366 x^{9} - 1450 x^{8} - 580 x^{7} + 2426 x^{6} - 3889 x^{5} + 1666 x^{4} - 2018 x^{3} + 1594 x^{2} - 11 x + 1523 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(380365185374172174242128260096=2^{10}\cdot 3^{4}\cdot 19^{3}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{6} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} + \frac{1}{3} a^{13} - \frac{1}{2} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{2} a^{8} + \frac{1}{3} a^{5} - \frac{1}{6} a^{4} - \frac{1}{3} a^{3} + \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{12} a^{17} + \frac{5}{12} a^{14} - \frac{1}{2} a^{13} - \frac{1}{4} a^{12} + \frac{1}{12} a^{11} + \frac{1}{6} a^{10} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{6} a^{6} + \frac{5}{12} a^{5} + \frac{1}{12} a^{4} + \frac{1}{12} a^{2} - \frac{1}{6} a - \frac{1}{4}$, $\frac{1}{24} a^{18} - \frac{1}{24} a^{17} + \frac{5}{24} a^{15} + \frac{1}{24} a^{14} + \frac{1}{8} a^{13} - \frac{1}{3} a^{12} - \frac{11}{24} a^{11} - \frac{11}{24} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} + \frac{1}{12} a^{7} + \frac{1}{8} a^{6} + \frac{1}{3} a^{5} + \frac{11}{24} a^{4} - \frac{11}{24} a^{3} - \frac{1}{8} a^{2} - \frac{1}{24} a - \frac{3}{8}$, $\frac{1}{126089173774798545648911976964624335408} a^{19} + \frac{167201141832252301627346160451685797}{63044586887399272824455988482312167704} a^{18} + \frac{218002719141570266792070210749618669}{14009908197199838405434664107180481712} a^{17} + \frac{8300349633337724231241217029639089197}{126089173774798545648911976964624335408} a^{16} + \frac{7081550113128501918680601778133636645}{15761146721849818206113997120578041926} a^{15} - \frac{214886380866737245727493436825619713}{913689665034772069919652006990031416} a^{14} + \frac{26371399671615560861151318779160127}{5482137990208632419517912041940188496} a^{13} - \frac{33851010996712019171608327829442444635}{126089173774798545648911976964624335408} a^{12} - \frac{3227283633025847209965724836157114457}{31522293443699636412227994241156083852} a^{11} - \frac{11013003470745748178780789873427335431}{126089173774798545648911976964624335408} a^{10} + \frac{8944121482473201076375030401838180969}{126089173774798545648911976964624335408} a^{9} - \frac{22571155837661884850852879056339536757}{126089173774798545648911976964624335408} a^{8} + \frac{7561988869479727170008206526653253995}{42029724591599515216303992321541445136} a^{7} - \frac{26013571319648572847633757660879168079}{126089173774798545648911976964624335408} a^{6} - \frac{2246784160786466966403418094167885135}{42029724591599515216303992321541445136} a^{5} + \frac{5369766930662480794579007806839822187}{63044586887399272824455988482312167704} a^{4} + \frac{7122080819198133500566035299433784007}{31522293443699636412227994241156083852} a^{3} - \frac{5915070850689747235217160045080150801}{63044586887399272824455988482312167704} a^{2} + \frac{12797247770693274398529651757747561457}{31522293443699636412227994241156083852} a - \frac{59123769259280276365256960959354771963}{126089173774798545648911976964624335408}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21822659.5664 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 327680 |
| The 512 conjugacy class representatives for t20n905 are not computed |
| Character table for t20n905 is not computed |
Intermediate fields
| 5.5.160801.1, 10.6.1473846811257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.13 | $x^{10} - 15 x^{8} + 26 x^{6} - 22 x^{4} + 37 x^{2} - 59$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $19$ | 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.3.1 | $x^{4} + 76$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 401 | Data not computed | ||||||