Normalized defining polynomial
\( x^{20} - 2 x^{19} - 11 x^{18} + 16 x^{17} + 62 x^{16} - 184 x^{14} + 80 x^{13} + 215 x^{12} - 94 x^{11} - 673 x^{10} + 192 x^{9} - 476 x^{8} + 652 x^{7} + 386 x^{6} + 80 x^{5} - 162 x^{4} - 116 x^{3} + 6 x^{2} + 16 x + 4 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(37505108549012973893510496256=2^{54}\cdot 113^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11}$, $\frac{1}{8} a^{16} - \frac{1}{4} a^{15} + \frac{1}{8} a^{14} + \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{8} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{17} + \frac{1}{8} a^{15} - \frac{1}{4} a^{14} + \frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{18} - \frac{1}{4} a^{12} - \frac{1}{8} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{55548126249255530046314928} a^{19} + \frac{6884453755074717624647}{293905429890240899715952} a^{18} - \frac{99046196163130924003004}{3471757890578470627894683} a^{17} - \frac{2764766843185852586393}{210409569125967916842102} a^{16} - \frac{857673738834630659492092}{3471757890578470627894683} a^{15} + \frac{81742839699869508921037}{13887031562313882511578732} a^{14} + \frac{4897876855287853378905083}{27774063124627765023157464} a^{13} + \frac{546564191184995464671713}{3967723303518252146165352} a^{12} - \frac{23973046385372852347786313}{55548126249255530046314928} a^{11} + \frac{3337525089776604584751655}{7935446607036504292330704} a^{10} + \frac{1088827042838196141720505}{2524914829511615002105224} a^{9} - \frac{6562255941912570093120545}{27774063124627765023157464} a^{8} - \frac{6807862527061813081891445}{27774063124627765023157464} a^{7} - \frac{103206150077441245275697}{259570683407736121711752} a^{6} + \frac{715188728609968428201565}{1543003506923764723508748} a^{5} - \frac{4362518694282877014227683}{13887031562313882511578732} a^{4} - \frac{120289751608336895341937}{360702118501659286015032} a^{3} + \frac{721248636215373419963611}{9258021041542588341052488} a^{2} - \frac{29771767119158890577383}{1543003506923764723508748} a + \frac{3711999688782818614107097}{13887031562313882511578732}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39419063.9653 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1440 |
| The 13 conjugacy class representatives for t20n201 |
| Character table for t20n201 |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.2.24207794634752.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 30 sibling: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.8.24.4 | $x^{8} + 14 x^{4} + 8 x^{3} + 12 x^{2} + 8 x + 14$ | $8$ | $1$ | $24$ | $Q_8$ | $[2, 3, 4]$ | |
| 2.8.24.4 | $x^{8} + 14 x^{4} + 8 x^{3} + 12 x^{2} + 8 x + 14$ | $8$ | $1$ | $24$ | $Q_8$ | $[2, 3, 4]$ | |
| 113 | Data not computed | ||||||