Normalized defining polynomial
\( x^{20} - 10 x^{19} + 35 x^{18} - 30 x^{17} - 93 x^{16} + 132 x^{15} + 448 x^{14} - 1366 x^{13} + 1236 x^{12} - 6 x^{11} - 373 x^{10} - 693 x^{9} + 5066 x^{8} - 15386 x^{7} + 18856 x^{6} - 5521 x^{5} - 35907 x^{4} + 64294 x^{3} - 15860 x^{2} - 14823 x + 6893 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(372957170894101746709707868681=43^{2}\cdot 61^{6}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} + \frac{2}{5} a^{15} + \frac{1}{5} a^{11} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{17} + \frac{1}{5} a^{15} + \frac{1}{5} a^{12} - \frac{2}{5} a^{11} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{442251177887402426845} a^{18} - \frac{9}{442251177887402426845} a^{17} + \frac{33517481640236273368}{442251177887402426845} a^{16} + \frac{34822264953102448021}{88450235577480485369} a^{15} - \frac{8446112871449824101}{88450235577480485369} a^{14} + \frac{123298423372395415476}{442251177887402426845} a^{13} + \frac{180829620362701426539}{442251177887402426845} a^{12} + \frac{29663901021666011658}{88450235577480485369} a^{11} + \frac{52400534980546273779}{442251177887402426845} a^{10} - \frac{9181723702547015495}{88450235577480485369} a^{9} + \frac{42530092327292632288}{88450235577480485369} a^{8} - \frac{213877864455361551688}{442251177887402426845} a^{7} - \frac{92266773353131848219}{442251177887402426845} a^{6} + \frac{216087183433225599832}{442251177887402426845} a^{5} - \frac{177635616576462417257}{442251177887402426845} a^{4} + \frac{122358625340706536733}{442251177887402426845} a^{3} + \frac{9444800683586397831}{442251177887402426845} a^{2} + \frac{183403831706041485449}{442251177887402426845} a + \frac{24033768386698146220}{88450235577480485369}$, $\frac{1}{16510563224070394801404385} a^{19} + \frac{18657}{16510563224070394801404385} a^{18} + \frac{226023869382102876223169}{16510563224070394801404385} a^{17} + \frac{355507503696635427639529}{16510563224070394801404385} a^{16} + \frac{1771739420537840353192697}{16510563224070394801404385} a^{15} + \frac{3319034273171266650178661}{16510563224070394801404385} a^{14} - \frac{717557947127408518318662}{3302112644814078960280877} a^{13} - \frac{6482706993092794338966631}{16510563224070394801404385} a^{12} - \frac{300376308205853179957154}{3302112644814078960280877} a^{11} + \frac{331049004079094260807104}{16510563224070394801404385} a^{10} - \frac{923170526947999424233882}{3302112644814078960280877} a^{9} + \frac{6614754635399784807759511}{16510563224070394801404385} a^{8} - \frac{6693518228997808398340318}{16510563224070394801404385} a^{7} - \frac{3408250795275213826330638}{16510563224070394801404385} a^{6} + \frac{4133166046314988052028456}{16510563224070394801404385} a^{5} - \frac{5974172791143237722718462}{16510563224070394801404385} a^{4} + \frac{4686794645108146666590263}{16510563224070394801404385} a^{3} + \frac{5385137526078200565808567}{16510563224070394801404385} a^{2} + \frac{3339508367668297397021584}{16510563224070394801404385} a - \frac{3310364887437151767665434}{16510563224070394801404385}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3552525.49344 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n664 are not computed |
| Character table for t20n664 is not computed |
Intermediate fields
| 5.5.24217.1, 10.4.610702194931459.2, 10.4.25217912827.1, 10.6.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $43$ | 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 397 | Data not computed | ||||||