Normalized defining polynomial
\( x^{20} - 10 x^{19} + 53 x^{18} - 141 x^{17} + 279 x^{16} - 1035 x^{15} + 4394 x^{14} - 2186 x^{13} - 44057 x^{12} + 135940 x^{11} - 173437 x^{10} + 35093 x^{9} + 569138 x^{8} - 1725083 x^{7} + 2394022 x^{6} - 1741290 x^{5} + 631698 x^{4} - 67251 x^{3} - 26814 x^{2} + 10542 x - 1329 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(36701569863567925505657602228250827776=2^{10}\cdot 3^{26}\cdot 7^{6}\cdot 79^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{15} - \frac{1}{3} a^{14} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6}$, $\frac{1}{9} a^{18} + \frac{1}{3} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{2}{9} a^{12} + \frac{4}{9} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{4}{9} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{76194616616099986069514049022706442351249392621308539} a^{19} - \frac{519273481355594112269680848216303667075703188897156}{76194616616099986069514049022706442351249392621308539} a^{18} - \frac{3070137174701688155262124897942548888021942715564976}{25398205538699995356504683007568814117083130873769513} a^{17} + \frac{493796903405952082097186983677865723783022864319880}{25398205538699995356504683007568814117083130873769513} a^{16} - \frac{8850868508588978361579537185208618165148044387485411}{25398205538699995356504683007568814117083130873769513} a^{15} + \frac{12473837279359539789208482290270656525521625946130896}{25398205538699995356504683007568814117083130873769513} a^{14} + \frac{23551338589336557246551319382746084534713930757290993}{76194616616099986069514049022706442351249392621308539} a^{13} + \frac{27922164085532336280279262852146642369741344182503109}{76194616616099986069514049022706442351249392621308539} a^{12} + \frac{713162174270994504247782419555107444364284535465200}{25398205538699995356504683007568814117083130873769513} a^{11} - \frac{25718063897834353617367233622437810385116339912707978}{76194616616099986069514049022706442351249392621308539} a^{10} - \frac{8559161585252875641436251516868869487913639148843604}{76194616616099986069514049022706442351249392621308539} a^{9} - \frac{3721575095737101049948804357671159803483205242843995}{25398205538699995356504683007568814117083130873769513} a^{8} + \frac{26700711662164980145619560971472070087295542656364102}{76194616616099986069514049022706442351249392621308539} a^{7} + \frac{24253176684694723804762426455331839077801227096748359}{76194616616099986069514049022706442351249392621308539} a^{6} + \frac{3118942507198388005709934218855917819870151215215666}{8466068512899998452168227669189604705694376957923171} a^{5} - \frac{6639765665449436167574023055966995488225843178574378}{25398205538699995356504683007568814117083130873769513} a^{4} - \frac{12208972250933047156201661550039464613484681670353534}{25398205538699995356504683007568814117083130873769513} a^{3} - \frac{909783288146014541706064007436715192684368280248746}{8466068512899998452168227669189604705694376957923171} a^{2} + \frac{10958971121724477785650024278384224449376251776004718}{25398205538699995356504683007568814117083130873769513} a + \frac{10676917560781200902673455116202351129866835822842825}{25398205538699995356504683007568814117083130873769513}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 96190577161.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n792 are not computed |
| Character table for t20n792 is not computed |
Intermediate fields
| 5.5.403137.1, 10.2.89873250745257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.6.11.8 | $x^{6} + 12$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| 3.6.11.8 | $x^{6} + 12$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| $7$ | 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.8.6.2 | $x^{8} - 49 x^{4} + 3969$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| 79 | Data not computed | ||||||