Normalized defining polynomial
\( x^{20} - 9 x^{19} + 21 x^{18} + 67 x^{17} - 516 x^{16} + 1340 x^{15} - 1757 x^{14} + 724 x^{13} + 2773 x^{12} - 10994 x^{11} + 23618 x^{10} - 31140 x^{9} + 26929 x^{8} - 23202 x^{7} + 27266 x^{6} - 19836 x^{5} - 4569 x^{4} + 16445 x^{3} - 5010 x^{2} - 4815 x + 2665 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(36640532518883313131195831298828125=5^{17}\cdot 6029^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{37} a^{18} - \frac{10}{37} a^{17} + \frac{8}{37} a^{16} - \frac{7}{37} a^{15} + \frac{10}{37} a^{14} + \frac{11}{37} a^{13} - \frac{10}{37} a^{11} + \frac{8}{37} a^{10} - \frac{5}{37} a^{9} + \frac{18}{37} a^{8} - \frac{14}{37} a^{6} + \frac{11}{37} a^{5} + \frac{12}{37} a^{4} - \frac{10}{37} a^{3} + \frac{12}{37} a^{2} + \frac{13}{37} a - \frac{8}{37}$, $\frac{1}{233146621038003250636220656157} a^{19} + \frac{884958219965717451422355479}{233146621038003250636220656157} a^{18} + \frac{2531165520489966361014253271}{233146621038003250636220656157} a^{17} + \frac{63705238569894411850959115389}{233146621038003250636220656157} a^{16} + \frac{84745611255443730553169726727}{233146621038003250636220656157} a^{15} + \frac{86081461221098187008207886761}{233146621038003250636220656157} a^{14} + \frac{31273849090144959928641429512}{233146621038003250636220656157} a^{13} - \frac{45739670146596856223140436821}{233146621038003250636220656157} a^{12} + \frac{23559672763413484358379994444}{233146621038003250636220656157} a^{11} - \frac{64953836116062521986214115336}{233146621038003250636220656157} a^{10} - \frac{26670587251559692006021164330}{233146621038003250636220656157} a^{9} - \frac{43348309765810507822643114256}{233146621038003250636220656157} a^{8} - \frac{34158751219308656921511476901}{233146621038003250636220656157} a^{7} + \frac{20820015311675644338138868883}{233146621038003250636220656157} a^{6} - \frac{83150569251487250889645870780}{233146621038003250636220656157} a^{5} + \frac{92724472140546251953582426237}{233146621038003250636220656157} a^{4} - \frac{50494769387471745846523948404}{233146621038003250636220656157} a^{3} - \frac{64053934385670362909054729644}{233146621038003250636220656157} a^{2} - \frac{113332780599963840526249612345}{233146621038003250636220656157} a - \frac{9332696263549402814044035206}{233146621038003250636220656157}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1034026646.54 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n792 are not computed |
| Character table for t20n792 is not computed |
Intermediate fields
| 5.5.753625.1, 10.6.17120872061640625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.3 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.12.11.2 | $x^{12} - 20$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ | |
| 6029 | Data not computed | ||||||