Normalized defining polynomial
\( x^{20} - 6 x^{18} - 2 x^{17} + 16 x^{16} + 47 x^{15} + 84 x^{14} + 51 x^{13} + 91 x^{12} + 370 x^{11} + 418 x^{10} - 184 x^{9} - 1408 x^{8} - 2141 x^{7} - 435 x^{6} + 2072 x^{5} + 1857 x^{4} + 164 x^{3} - 364 x^{2} - 189 x - 23 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(364876273903737477578853376=2^{10}\cdot 11^{17}\cdot 89^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} - \frac{4}{11} a^{14} - \frac{3}{11} a^{13} + \frac{1}{11} a^{12} - \frac{1}{11} a^{10} + \frac{3}{11} a^{9} + \frac{2}{11} a^{8} + \frac{5}{11} a^{7} - \frac{4}{11} a^{6} + \frac{1}{11} a^{5} - \frac{3}{11} a^{3} - \frac{3}{11} a^{2} - \frac{4}{11} a - \frac{1}{11}$, $\frac{1}{11} a^{16} + \frac{3}{11} a^{14} + \frac{4}{11} a^{12} - \frac{1}{11} a^{11} - \frac{1}{11} a^{10} + \frac{3}{11} a^{9} + \frac{2}{11} a^{8} + \frac{5}{11} a^{7} - \frac{4}{11} a^{6} + \frac{4}{11} a^{5} - \frac{3}{11} a^{4} - \frac{4}{11} a^{3} - \frac{5}{11} a^{2} + \frac{5}{11} a - \frac{4}{11}$, $\frac{1}{11} a^{17} + \frac{1}{11} a^{14} + \frac{2}{11} a^{13} - \frac{4}{11} a^{12} - \frac{1}{11} a^{11} - \frac{5}{11} a^{10} + \frac{4}{11} a^{9} - \frac{1}{11} a^{8} + \frac{3}{11} a^{7} + \frac{5}{11} a^{6} + \frac{5}{11} a^{5} - \frac{4}{11} a^{4} + \frac{4}{11} a^{3} + \frac{3}{11} a^{2} - \frac{3}{11} a + \frac{3}{11}$, $\frac{1}{11} a^{18} - \frac{5}{11} a^{14} - \frac{1}{11} a^{13} - \frac{2}{11} a^{12} - \frac{5}{11} a^{11} + \frac{5}{11} a^{10} - \frac{4}{11} a^{9} + \frac{1}{11} a^{8} - \frac{2}{11} a^{6} - \frac{5}{11} a^{5} + \frac{4}{11} a^{4} - \frac{5}{11} a^{3} - \frac{4}{11} a + \frac{1}{11}$, $\frac{1}{63208632715936398434138263} a^{19} - \frac{1508238185338115904740561}{63208632715936398434138263} a^{18} - \frac{2326270438264240530537435}{63208632715936398434138263} a^{17} + \frac{1236599712407574081059936}{63208632715936398434138263} a^{16} + \frac{2688909852466901433649649}{63208632715936398434138263} a^{15} + \frac{25012516069919993333597929}{63208632715936398434138263} a^{14} - \frac{27092716169656363116995448}{63208632715936398434138263} a^{13} + \frac{1791649421231906115521156}{5746239337812399857648933} a^{12} + \frac{15643689499389550729385058}{63208632715936398434138263} a^{11} - \frac{19048822968875052291839400}{63208632715936398434138263} a^{10} + \frac{14390409219650705110255005}{63208632715936398434138263} a^{9} + \frac{22767918467674741966550211}{63208632715936398434138263} a^{8} - \frac{5390583914688030499878959}{63208632715936398434138263} a^{7} + \frac{18097654510691001605376447}{63208632715936398434138263} a^{6} - \frac{14776418754513876834836580}{63208632715936398434138263} a^{5} - \frac{15470870417683400187624865}{63208632715936398434138263} a^{4} + \frac{13933096826049829213216582}{63208632715936398434138263} a^{3} + \frac{2189200483429354137565701}{63208632715936398434138263} a^{2} + \frac{1408077027785622447660383}{63208632715936398434138263} a - \frac{24624182377900727582388628}{63208632715936398434138263}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 256871.832795 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 649 conjugacy class representatives for t20n846 are not computed |
| Character table for t20n846 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.2.19077940409.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.10 | $x^{10} - 11 x^{8} + 10 x^{6} - 62 x^{4} + 21 x^{2} - 55$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 89 | Data not computed | ||||||