Normalized defining polynomial
\( x^{20} - 9 x^{19} + 40 x^{18} - 144 x^{17} + 516 x^{16} - 1834 x^{15} + 5631 x^{14} - 12731 x^{13} + 16312 x^{12} + 5824 x^{11} - 82471 x^{10} + 236582 x^{9} - 555542 x^{8} + 1280304 x^{7} - 2509850 x^{6} + 3871339 x^{5} - 4806625 x^{4} + 4679392 x^{3} - 3274691 x^{2} + 1427622 x - 283113 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3600673847451055477688605112375921=17^{4}\cdot 401^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{14} - \frac{2}{9} a^{11} - \frac{1}{9} a^{10} - \frac{4}{9} a^{8} + \frac{1}{3} a^{7} + \frac{4}{9} a^{6} + \frac{1}{9} a^{5} - \frac{4}{9} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{2}{9} a + \frac{1}{3}$, $\frac{1}{9} a^{16} - \frac{1}{9} a^{14} + \frac{1}{9} a^{12} + \frac{4}{9} a^{11} - \frac{2}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{2}{9} a^{7} + \frac{1}{9} a^{5} + \frac{1}{9} a^{4} + \frac{1}{9} a^{2} - \frac{1}{9} a - \frac{1}{3}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{14} + \frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{2}{9} a^{11} + \frac{1}{9} a^{10} - \frac{2}{9} a^{9} - \frac{1}{3} a^{7} + \frac{2}{9} a^{6} - \frac{4}{9} a^{5} - \frac{4}{9} a^{4} + \frac{4}{9} a^{3} - \frac{4}{9} a^{2} + \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{27} a^{18} - \frac{1}{27} a^{17} - \frac{1}{27} a^{15} + \frac{1}{27} a^{14} - \frac{1}{9} a^{13} + \frac{1}{27} a^{12} - \frac{2}{9} a^{11} - \frac{13}{27} a^{10} + \frac{2}{27} a^{9} - \frac{4}{27} a^{8} + \frac{8}{27} a^{7} + \frac{1}{27} a^{6} + \frac{1}{27} a^{5} - \frac{11}{27} a^{4} - \frac{11}{27} a^{3} - \frac{7}{27} a^{2} - \frac{1}{9} a$, $\frac{1}{143499186917287014830984391166099583916997400536609407} a^{19} + \frac{388806879925160920531618089798408177220703057501278}{143499186917287014830984391166099583916997400536609407} a^{18} + \frac{4375340680848080834275093111514406367431038938746712}{143499186917287014830984391166099583916997400536609407} a^{17} - \frac{7868013799702334529930835100657432117794269860270143}{143499186917287014830984391166099583916997400536609407} a^{16} - \frac{2785084051234328551753319330300010286695089598581008}{143499186917287014830984391166099583916997400536609407} a^{15} - \frac{13569691783164295070092452250478963273204810447652985}{143499186917287014830984391166099583916997400536609407} a^{14} + \frac{5478132460516063772866748874451006212134862253114075}{143499186917287014830984391166099583916997400536609407} a^{13} - \frac{2040891609843146723598288243538720854598862362286164}{143499186917287014830984391166099583916997400536609407} a^{12} + \frac{61053778191577911774194229716751318839572178871278}{143499186917287014830984391166099583916997400536609407} a^{11} + \frac{19170710974720261733914904473426132898122714244499677}{47833062305762338276994797055366527972332466845536469} a^{10} - \frac{295171811993047452816835921175084695977186983649299}{15944354101920779425664932351788842657444155615178823} a^{9} - \frac{19093965699481900698479126552511427513978982715860713}{47833062305762338276994797055366527972332466845536469} a^{8} - \frac{56340461518138035444199406953961679517542715903221775}{143499186917287014830984391166099583916997400536609407} a^{7} - \frac{5940213434742163220074097344884459419774892335663854}{15944354101920779425664932351788842657444155615178823} a^{6} + \frac{15090526718881648459169021608000085178072951675779366}{47833062305762338276994797055366527972332466845536469} a^{5} + \frac{6637646029485176042517300445182471867754103809491452}{47833062305762338276994797055366527972332466845536469} a^{4} + \frac{29852264877884771137222248042877145135314693851550462}{143499186917287014830984391166099583916997400536609407} a^{3} - \frac{17546503644017588995468069786768317867051278756542070}{143499186917287014830984391166099583916997400536609407} a^{2} + \frac{15329787385978008770983774149873223955693898999450656}{47833062305762338276994797055366527972332466845536469} a + \frac{5634849737511362992102084646768236548231441616902820}{15944354101920779425664932351788842657444155615178823}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 466770383.082 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 104 conjugacy class representatives for t20n350 are not computed |
| Character table for t20n350 is not computed |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||