Normalized defining polynomial
\( x^{20} - 4 x^{19} + 38 x^{18} - 105 x^{17} + 527 x^{16} - 1008 x^{15} + 3445 x^{14} - 4167 x^{13} + 9662 x^{12} - 184 x^{11} - 19841 x^{10} + 82259 x^{9} - 235873 x^{8} + 173129 x^{7} - 263315 x^{6} - 1062570 x^{5} + 785364 x^{4} - 2070773 x^{3} - 1901083 x^{2} + 1264948 x - 524809 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3600673847451055477688605112375921=17^{4}\cdot 401^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{16} - \frac{1}{9} a^{13} + \frac{2}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} + \frac{2}{9} a^{7} - \frac{2}{9} a^{5} + \frac{2}{9} a^{4} - \frac{1}{3} a^{3} - \frac{1}{9} a^{2} + \frac{2}{9} a - \frac{1}{9}$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{14} + \frac{2}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{2}{9} a^{8} - \frac{2}{9} a^{6} + \frac{2}{9} a^{5} - \frac{1}{3} a^{4} - \frac{1}{9} a^{3} + \frac{2}{9} a^{2} - \frac{1}{9} a$, $\frac{1}{27} a^{18} + \frac{1}{27} a^{17} - \frac{1}{27} a^{16} - \frac{1}{27} a^{15} - \frac{1}{27} a^{14} + \frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{3} a^{11} - \frac{1}{27} a^{10} + \frac{4}{9} a^{8} + \frac{5}{27} a^{7} - \frac{1}{3} a^{6} + \frac{10}{27} a^{5} - \frac{2}{9} a^{4} + \frac{13}{27} a^{3} - \frac{7}{27} a^{2} - \frac{4}{9} a + \frac{1}{27}$, $\frac{1}{57929338163475793678882176491052519624840912995844789} a^{19} + \frac{245927860533309157444879549927844061746589345893659}{19309779387825264559627392163684173208280304331948263} a^{18} - \frac{2748139991504259625715058385252743142763376366739136}{57929338163475793678882176491052519624840912995844789} a^{17} - \frac{958500839343485199690854464919403789857776948177057}{19309779387825264559627392163684173208280304331948263} a^{16} - \frac{851235758431317459737685959984142376803828314631061}{19309779387825264559627392163684173208280304331948263} a^{15} + \frac{8237766426538484495876560698319108740994116025549375}{57929338163475793678882176491052519624840912995844789} a^{14} - \frac{822822543768736360454583259083511754175092565853069}{6436593129275088186542464054561391069426768110649421} a^{13} - \frac{1168020167302146298888106327625082633735134303541802}{19309779387825264559627392163684173208280304331948263} a^{12} + \frac{10583634426776162017373751973030819028247577935292046}{57929338163475793678882176491052519624840912995844789} a^{11} - \frac{13378343121790454368188762944251417579606117842306152}{57929338163475793678882176491052519624840912995844789} a^{10} + \frac{546668064427721754710777436768378621562373353930598}{6436593129275088186542464054561391069426768110649421} a^{9} - \frac{23588943443323874522694847009509241502449082979032050}{57929338163475793678882176491052519624840912995844789} a^{8} + \frac{22291460622257768205022186961092978784065145447641831}{57929338163475793678882176491052519624840912995844789} a^{7} + \frac{5661997255628972067203754408908642964256931816668570}{57929338163475793678882176491052519624840912995844789} a^{6} - \frac{20004998472349102027135180023481825997735893227756784}{57929338163475793678882176491052519624840912995844789} a^{5} - \frac{8054573284730005144021889418607208428824336061354112}{57929338163475793678882176491052519624840912995844789} a^{4} + \frac{22522148856322576388780802419951884333364080773687937}{57929338163475793678882176491052519624840912995844789} a^{3} + \frac{4640125526414632488150677293489835911659294978470233}{57929338163475793678882176491052519624840912995844789} a^{2} + \frac{22230849313387337130073463668542425112560301221517682}{57929338163475793678882176491052519624840912995844789} a + \frac{160128263621730704365109654355192869811792645336205}{697943833294889080468459957723524332829408590311383}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 333861139.455 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 104 conjugacy class representatives for t20n350 are not computed |
| Character table for t20n350 is not computed |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||