Normalized defining polynomial
\( x^{20} - x^{19} + 9 x^{18} - 22 x^{17} + 83 x^{16} - 35 x^{15} - 157 x^{14} + 1172 x^{13} - 1273 x^{12} + 1905 x^{11} + 2841 x^{10} + 218 x^{9} - 920 x^{8} + 8504 x^{7} + 10096 x^{6} + 640 x^{5} - 4544 x^{4} - 4480 x^{3} - 2048 x^{2} + 512 x + 1024 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3587649573964648540160000000000=2^{20}\cdot 5^{10}\cdot 89^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{8} a^{5} - \frac{3}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{13} + \frac{1}{16} a^{12} - \frac{1}{8} a^{11} - \frac{1}{16} a^{10} - \frac{3}{16} a^{9} + \frac{3}{16} a^{8} + \frac{3}{16} a^{6} - \frac{7}{16} a^{5} + \frac{1}{16} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{14} + \frac{1}{32} a^{13} + \frac{1}{16} a^{12} + \frac{3}{32} a^{11} - \frac{3}{32} a^{10} - \frac{5}{32} a^{9} - \frac{1}{8} a^{8} + \frac{7}{32} a^{7} - \frac{15}{32} a^{6} - \frac{15}{32} a^{5} + \frac{1}{16} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{16} - \frac{1}{64} a^{15} + \frac{1}{64} a^{14} + \frac{1}{32} a^{13} - \frac{5}{64} a^{12} - \frac{3}{64} a^{11} - \frac{5}{64} a^{10} - \frac{1}{16} a^{9} - \frac{1}{64} a^{8} + \frac{1}{64} a^{7} - \frac{15}{64} a^{6} - \frac{15}{32} a^{5} + \frac{1}{4} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{256} a^{17} + \frac{1}{256} a^{16} - \frac{1}{256} a^{15} + \frac{1}{64} a^{14} + \frac{15}{256} a^{13} - \frac{29}{256} a^{12} + \frac{21}{256} a^{11} - \frac{7}{128} a^{10} - \frac{25}{256} a^{9} - \frac{17}{256} a^{8} - \frac{13}{256} a^{7} + \frac{9}{64} a^{6} - \frac{23}{64} a^{5} + \frac{1}{32} a^{4} + \frac{7}{16} a^{3} + \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10240} a^{18} + \frac{11}{10240} a^{17} - \frac{11}{2048} a^{16} + \frac{21}{5120} a^{15} + \frac{167}{10240} a^{14} - \frac{183}{10240} a^{13} + \frac{151}{2048} a^{12} - \frac{15}{512} a^{11} + \frac{427}{10240} a^{10} - \frac{411}{10240} a^{9} - \frac{1943}{10240} a^{8} + \frac{409}{5120} a^{7} + \frac{1031}{2560} a^{6} - \frac{1}{40} a^{5} + \frac{1}{4} a^{4} - \frac{13}{80} a^{3} + \frac{17}{160} a^{2} + \frac{3}{16} a + \frac{9}{40}$, $\frac{1}{58660372987559910181049647554560} a^{19} - \frac{141872284474285415430083351}{11732074597511982036209929510912} a^{18} - \frac{97735356274082627623810209121}{58660372987559910181049647554560} a^{17} - \frac{95723622586117504031106865457}{14665093246889977545262411888640} a^{16} - \frac{109749927416250094382617061633}{11732074597511982036209929510912} a^{15} - \frac{198259494685643986170109409237}{11732074597511982036209929510912} a^{14} - \frac{3115389943851824251985155204027}{58660372987559910181049647554560} a^{13} + \frac{8270326635524398464463355065}{5866037298755991018104964755456} a^{12} + \frac{847987287037070296765694828627}{58660372987559910181049647554560} a^{11} - \frac{309093174965134252499107454213}{58660372987559910181049647554560} a^{10} + \frac{14490634481202020733918302237043}{58660372987559910181049647554560} a^{9} + \frac{2806615944102855407694953941729}{14665093246889977545262411888640} a^{8} - \frac{35951514698773874132997085629}{229142081982655899144725185760} a^{7} - \frac{14506647646514302181164563341}{1466509324688997754526241188864} a^{6} - \frac{119164220899050774950974653823}{458284163965311798289450371520} a^{5} + \frac{86728464294324459291246598547}{458284163965311798289450371520} a^{4} - \frac{1904930339636651826482928753}{48240438312138084030468460160} a^{3} - \frac{24781424244349178392754017407}{57285520495663974786181296440} a^{2} + \frac{7399974449755385716554072393}{28642760247831987393090648220} a - \frac{1747964766216933321059071007}{114571040991327949572362592880}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 49324768.242 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 57600 |
| The 76 conjugacy class representatives for t20n658 are not computed |
| Character table for t20n658 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2225.1, 10.2.25347200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $89$ | 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.6.4.1 | $x^{6} + 1513 x^{3} + 1710936$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 89.6.3.2 | $x^{6} - 7921 x^{2} + 4934783$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |