Properties

Label 20.4.35511234401...4869.1
Degree $20$
Signature $[4, 8]$
Discriminant $13^{10}\cdot 347^{4}\cdot 1776701$
Root discriminant $23.85$
Ramified primes $13, 347, 1776701$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T887

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 9, -38, 72, -58, -29, 193, -492, 1065, -1990, 3061, -3828, 3901, -3256, 2230, -1248, 564, -201, 54, -10, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^19 + 54*x^18 - 201*x^17 + 564*x^16 - 1248*x^15 + 2230*x^14 - 3256*x^13 + 3901*x^12 - 3828*x^11 + 3061*x^10 - 1990*x^9 + 1065*x^8 - 492*x^7 + 193*x^6 - 29*x^5 - 58*x^4 + 72*x^3 - 38*x^2 + 9*x + 1)
 
gp: K = bnfinit(x^20 - 10*x^19 + 54*x^18 - 201*x^17 + 564*x^16 - 1248*x^15 + 2230*x^14 - 3256*x^13 + 3901*x^12 - 3828*x^11 + 3061*x^10 - 1990*x^9 + 1065*x^8 - 492*x^7 + 193*x^6 - 29*x^5 - 58*x^4 + 72*x^3 - 38*x^2 + 9*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{19} + 54 x^{18} - 201 x^{17} + 564 x^{16} - 1248 x^{15} + 2230 x^{14} - 3256 x^{13} + 3901 x^{12} - 3828 x^{11} + 3061 x^{10} - 1990 x^{9} + 1065 x^{8} - 492 x^{7} + 193 x^{6} - 29 x^{5} - 58 x^{4} + 72 x^{3} - 38 x^{2} + 9 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3551123440117203753498174869=13^{10}\cdot 347^{4}\cdot 1776701\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $23.85$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 347, 1776701$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{13} a^{16} + \frac{5}{13} a^{15} - \frac{1}{13} a^{14} + \frac{4}{13} a^{13} - \frac{2}{13} a^{12} - \frac{1}{13} a^{11} - \frac{2}{13} a^{10} + \frac{4}{13} a^{9} + \frac{4}{13} a^{8} + \frac{1}{13} a^{7} - \frac{2}{13} a^{6} + \frac{3}{13} a^{5} + \frac{3}{13} a^{4} + \frac{2}{13} a^{2} - \frac{6}{13} a + \frac{4}{13}$, $\frac{1}{13} a^{17} - \frac{4}{13} a^{14} + \frac{4}{13} a^{13} - \frac{4}{13} a^{12} + \frac{3}{13} a^{11} + \frac{1}{13} a^{10} - \frac{3}{13} a^{9} - \frac{6}{13} a^{8} + \frac{6}{13} a^{7} + \frac{1}{13} a^{5} - \frac{2}{13} a^{4} + \frac{2}{13} a^{3} - \frac{3}{13} a^{2} - \frac{5}{13} a + \frac{6}{13}$, $\frac{1}{13} a^{18} - \frac{4}{13} a^{15} + \frac{4}{13} a^{14} - \frac{4}{13} a^{13} + \frac{3}{13} a^{12} + \frac{1}{13} a^{11} - \frac{3}{13} a^{10} - \frac{6}{13} a^{9} + \frac{6}{13} a^{8} + \frac{1}{13} a^{6} - \frac{2}{13} a^{5} + \frac{2}{13} a^{4} - \frac{3}{13} a^{3} - \frac{5}{13} a^{2} + \frac{6}{13} a$, $\frac{1}{13} a^{19} - \frac{2}{13} a^{15} + \frac{5}{13} a^{14} + \frac{6}{13} a^{13} + \frac{6}{13} a^{12} + \frac{6}{13} a^{11} - \frac{1}{13} a^{10} - \frac{4}{13} a^{9} + \frac{3}{13} a^{8} + \frac{5}{13} a^{7} + \frac{3}{13} a^{6} + \frac{1}{13} a^{5} - \frac{4}{13} a^{4} - \frac{5}{13} a^{3} + \frac{1}{13} a^{2} + \frac{2}{13} a + \frac{3}{13}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 605684.795832 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T887:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 245760
The 201 conjugacy class representatives for t20n887 are not computed
Character table for t20n887 is not computed

Intermediate fields

\(\Q(\sqrt{13}) \), 5.3.4511.1, 10.6.44707018837.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
347Data not computed
1776701Data not computed