Normalized defining polynomial
\( x^{20} - 4 x^{19} + 66 x^{17} - 296 x^{16} + 128 x^{15} + 1930 x^{14} - 3094 x^{13} - 3878 x^{12} + 10740 x^{11} - 2802 x^{10} - 4148 x^{9} + 19635 x^{8} - 62956 x^{7} + 4884 x^{6} + 178202 x^{5} - 196672 x^{4} + 6778 x^{3} + 159750 x^{2} - 217446 x + 116005 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3550520998942383746231172591517696=2^{30}\cdot 61^{5}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{140341856200668803054273165407914137490982610693} a^{19} + \frac{27928219907930263237463500605973535748852338424}{140341856200668803054273165407914137490982610693} a^{18} + \frac{41982333135253076045256892971976182732413929078}{140341856200668803054273165407914137490982610693} a^{17} + \frac{895155718725378580239652980685776139903811342}{140341856200668803054273165407914137490982610693} a^{16} - \frac{11678669295836784962509013734376814752577744113}{140341856200668803054273165407914137490982610693} a^{15} - \frac{42417154225486627281309587020360041627689411603}{140341856200668803054273165407914137490982610693} a^{14} - \frac{49172338146040639849901866864080522389901056771}{140341856200668803054273165407914137490982610693} a^{13} - \frac{65769089702309719288745118183712956614747559294}{140341856200668803054273165407914137490982610693} a^{12} - \frac{26527053674204296213788987889405037890577968574}{140341856200668803054273165407914137490982610693} a^{11} + \frac{62186021961786535598737968725899589622043507804}{140341856200668803054273165407914137490982610693} a^{10} + \frac{64902765715387106653118151376486110657711635855}{140341856200668803054273165407914137490982610693} a^{9} - \frac{39375136313796250551746833830519946977844160305}{140341856200668803054273165407914137490982610693} a^{8} - \frac{41467400578210565756858010775097801420917739371}{140341856200668803054273165407914137490982610693} a^{7} - \frac{65990384880649278814798613945625173743189460169}{140341856200668803054273165407914137490982610693} a^{6} - \frac{22686153617234331728335840030512451193354169000}{140341856200668803054273165407914137490982610693} a^{5} + \frac{35520119673775152139743210643621127548028023790}{140341856200668803054273165407914137490982610693} a^{4} + \frac{20623231384779189662306099540928415673019368218}{140341856200668803054273165407914137490982610693} a^{3} - \frac{12541973831678892768653285286841869979971510761}{140341856200668803054273165407914137490982610693} a^{2} - \frac{17716299549468883899060990587451830839517521261}{140341856200668803054273165407914137490982610693} a + \frac{13121561825044866351041356303163210919077757138}{140341856200668803054273165407914137490982610693}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1129621117.14 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 265 conjugacy class representatives for t20n993 are not computed |
| Character table for t20n993 is not computed |
Intermediate fields
| 5.5.24217.1, 10.10.238413666644992.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | $16{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | $16{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||