Normalized defining polynomial
\( x^{20} - 4 x^{19} - 10 x^{18} + 85 x^{17} - 37 x^{16} - 586 x^{15} + 658 x^{14} + 1887 x^{13} - 2844 x^{12} - 2226 x^{11} + 2253 x^{10} + 6966 x^{9} - 5114 x^{8} - 8197 x^{7} + 7412 x^{6} + 6499 x^{5} - 9436 x^{4} - 388 x^{3} + 6295 x^{2} - 3624 x + 747 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3491991015954496398424073156481=3^{4}\cdot 401^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{14} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{14} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{4947} a^{18} + \frac{812}{4947} a^{17} + \frac{53}{4947} a^{16} - \frac{31}{4947} a^{15} + \frac{823}{1649} a^{14} - \frac{856}{4947} a^{13} + \frac{717}{1649} a^{12} + \frac{554}{1649} a^{11} + \frac{1718}{4947} a^{10} + \frac{1160}{4947} a^{9} - \frac{95}{1649} a^{8} - \frac{127}{1649} a^{7} - \frac{137}{291} a^{6} + \frac{702}{1649} a^{5} + \frac{46}{291} a^{4} + \frac{287}{4947} a^{3} - \frac{1174}{4947} a^{2} + \frac{64}{4947} a - \frac{671}{1649}$, $\frac{1}{5122900212047879819093285105089099689} a^{19} + \frac{300350105510141648733128241709102}{5122900212047879819093285105089099689} a^{18} - \frac{32204619363469145998650185835980657}{301347071296934107005487359122888217} a^{17} + \frac{4827681280342172407572765200959972}{5122900212047879819093285105089099689} a^{16} + \frac{2828205067525020098307886528573}{1551923723734589463524169980335989} a^{15} - \frac{405987414711140342312230101709380580}{5122900212047879819093285105089099689} a^{14} + \frac{800006683937253441042881872435275220}{5122900212047879819093285105089099689} a^{13} + \frac{2528923159831467047318818811646175724}{5122900212047879819093285105089099689} a^{12} + \frac{1838833284676119494008547191888183121}{5122900212047879819093285105089099689} a^{11} + \frac{2450452456699537769518879434242485381}{5122900212047879819093285105089099689} a^{10} - \frac{678062573887728505635072208903286746}{1707633404015959939697761701696366563} a^{9} - \frac{1696721033239713168128855153319041780}{5122900212047879819093285105089099689} a^{8} - \frac{1114578761714604989367054774676258576}{5122900212047879819093285105089099689} a^{7} - \frac{60172490074512276706612711087790890}{1707633404015959939697761701696366563} a^{6} + \frac{2455554716858833874773053846227814374}{5122900212047879819093285105089099689} a^{5} - \frac{76464838754117674045059786009676359}{1707633404015959939697761701696366563} a^{4} + \frac{261759421887689491559466911169179699}{1707633404015959939697761701696366563} a^{3} + \frac{210615478902809613130678545690984382}{1707633404015959939697761701696366563} a^{2} - \frac{1821331505555880822386768217041933273}{5122900212047879819093285105089099689} a - \frac{360658670921941906697004531894696817}{1707633404015959939697761701696366563}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23219613.5506 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_2^4:C_5).C_2$ (as 20T84):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $(C_2\times C_2^4:C_5).C_2$ |
| Character table for $(C_2\times C_2^4:C_5).C_2$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||