Normalized defining polynomial
\( x^{20} - 3 x^{19} + 7 x^{18} - 15 x^{17} + 20 x^{16} - 19 x^{15} - 5 x^{14} - 2 x^{13} + 27 x^{12} - 10 x^{10} + 66 x^{9} - 2 x^{8} - 49 x^{7} - 69 x^{6} + 19 x^{5} - 7 x^{4} - 17 x^{3} + 21 x^{2} - 7 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(348841672023202139208688921=11^{18}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{6120963851104427183} a^{19} + \frac{1325031938659587017}{6120963851104427183} a^{18} + \frac{1838599002335896402}{6120963851104427183} a^{17} + \frac{1751414193060666356}{6120963851104427183} a^{16} + \frac{1372952763676366937}{6120963851104427183} a^{15} + \frac{1533300016569738722}{6120963851104427183} a^{14} - \frac{853406164184057415}{6120963851104427183} a^{13} + \frac{490127348076960523}{6120963851104427183} a^{12} - \frac{2887889295721402201}{6120963851104427183} a^{11} - \frac{2183179321194326923}{6120963851104427183} a^{10} + \frac{2251943501850733080}{6120963851104427183} a^{9} + \frac{1714391379652733072}{6120963851104427183} a^{8} + \frac{634114320545558040}{6120963851104427183} a^{7} + \frac{457953227978774054}{6120963851104427183} a^{6} - \frac{975227269709209935}{6120963851104427183} a^{5} + \frac{653529795925459484}{6120963851104427183} a^{4} - \frac{2023018836808056713}{6120963851104427183} a^{3} + \frac{2669278287134501722}{6120963851104427183} a^{2} - \frac{2615109322814242382}{6120963851104427183} a - \frac{2142653373516175997}{6120963851104427183}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 168465.240789 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_2^4:C_5$ (as 20T74):
| A solvable group of order 320 |
| The 32 conjugacy class representatives for $C_2^2\times C_2^4:C_5$ |
| Character table for $C_2^2\times C_2^4:C_5$ is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.2.19077940409.1, 10.4.18677303660411.2, 10.8.209857344499.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 89 | Data not computed | ||||||