Normalized defining polynomial
\( x^{20} - 2 x^{19} - 3 x^{18} - 2 x^{17} + 3 x^{16} + 19 x^{15} + 40 x^{14} - 48 x^{13} - 96 x^{12} - 44 x^{11} - 10 x^{10} + 110 x^{9} + 4 x^{8} - 107 x^{7} - 45 x^{6} + 69 x^{5} + x^{4} - 34 x^{3} + 17 x^{2} - 5 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(348841672023202139208688921=11^{18}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{1438974044508037316533} a^{19} - \frac{311776669417527204555}{1438974044508037316533} a^{18} + \frac{569124840817380105005}{1438974044508037316533} a^{17} + \frac{455613613341019762788}{1438974044508037316533} a^{16} + \frac{183911165847798529661}{1438974044508037316533} a^{15} + \frac{501268416751311542857}{1438974044508037316533} a^{14} + \frac{704909702687891021634}{1438974044508037316533} a^{13} + \frac{27103833216469942481}{1438974044508037316533} a^{12} - \frac{362061128433270989389}{1438974044508037316533} a^{11} - \frac{281558326399780078529}{1438974044508037316533} a^{10} + \frac{51901764465343922677}{1438974044508037316533} a^{9} - \frac{630314561682078575191}{1438974044508037316533} a^{8} - \frac{23660965039549211804}{62564088891653796371} a^{7} - \frac{404680468623440450632}{1438974044508037316533} a^{6} - \frac{251716550121300437195}{1438974044508037316533} a^{5} - \frac{70055911442445667456}{1438974044508037316533} a^{4} + \frac{240622642718117276271}{1438974044508037316533} a^{3} - \frac{525961524115781479239}{1438974044508037316533} a^{2} + \frac{537766675194193613254}{1438974044508037316533} a + \frac{391144541370918268325}{1438974044508037316533}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 195254.149815 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_2^4:C_5$ (as 20T74):
| A solvable group of order 320 |
| The 32 conjugacy class representatives for $C_2^2\times C_2^4:C_5$ |
| Character table for $C_2^2\times C_2^4:C_5$ is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.2.19077940409.1, 10.4.18677303660411.1, 10.8.209857344499.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 89 | Data not computed | ||||||