Normalized defining polynomial
\( x^{20} - 4 x^{19} - 2 x^{18} + 27 x^{17} - 28 x^{16} - 71 x^{15} + 109 x^{14} + 238 x^{13} - 715 x^{12} + 559 x^{11} + 465 x^{10} - 1132 x^{9} - 346 x^{8} + 5123 x^{7} - 13689 x^{6} + 22909 x^{5} - 28282 x^{4} + 27828 x^{3} - 20808 x^{2} + 10968 x - 3089 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(34843561790753768585205078125=5^{15}\cdot 97^{2}\cdot 3319^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 97, 3319$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{19} a^{18} + \frac{6}{19} a^{17} - \frac{6}{19} a^{16} + \frac{1}{19} a^{15} + \frac{5}{19} a^{14} - \frac{9}{19} a^{13} + \frac{3}{19} a^{12} + \frac{8}{19} a^{11} + \frac{9}{19} a^{10} + \frac{4}{19} a^{9} + \frac{5}{19} a^{8} - \frac{8}{19} a^{7} - \frac{5}{19} a^{6} - \frac{1}{19} a^{5} - \frac{3}{19} a^{4} - \frac{9}{19} a^{3} - \frac{3}{19} a^{2} + \frac{7}{19} a - \frac{7}{19}$, $\frac{1}{37333124133188552825414138859375341339} a^{19} - \frac{899366262252785022354496068331170905}{37333124133188552825414138859375341339} a^{18} - \frac{16862901001109150637822272360329070412}{37333124133188552825414138859375341339} a^{17} + \frac{16813255895099013620924335087703116004}{37333124133188552825414138859375341339} a^{16} + \frac{5240027102123721455859821180900289190}{37333124133188552825414138859375341339} a^{15} - \frac{1126697854680343445040745535690695819}{37333124133188552825414138859375341339} a^{14} - \frac{8921663542646645298075026606032169857}{37333124133188552825414138859375341339} a^{13} + \frac{18095820118131559767170369565562718132}{37333124133188552825414138859375341339} a^{12} - \frac{2169803925483821629310771100933888725}{37333124133188552825414138859375341339} a^{11} - \frac{277863198790076855088942374960097993}{1964901270167818569758638887335544281} a^{10} + \frac{17791056376990000222601474350997004823}{37333124133188552825414138859375341339} a^{9} + \frac{3276200617216469209847801304897367950}{37333124133188552825414138859375341339} a^{8} + \frac{2590688185657785773451853710381655023}{37333124133188552825414138859375341339} a^{7} - \frac{7269797252133331945965531012879556171}{37333124133188552825414138859375341339} a^{6} - \frac{5666689944220456260061280946846206622}{37333124133188552825414138859375341339} a^{5} - \frac{15865892915161879368943245595424617615}{37333124133188552825414138859375341339} a^{4} + \frac{2070628234149566192317405240333309733}{37333124133188552825414138859375341339} a^{3} - \frac{1080386032991580845748562074528987588}{37333124133188552825414138859375341339} a^{2} + \frac{8992569882169759348722241506918677751}{37333124133188552825414138859375341339} a - \frac{9785141773364272946715887001281475948}{37333124133188552825414138859375341339}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2315293.58671 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n755 are not computed |
| Character table for t20n755 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.6.34424253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $97$ | 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 3319 | Data not computed | ||||||