Normalized defining polynomial
\( x^{20} - 10 x^{19} + 47 x^{18} - 138 x^{17} + 283 x^{16} - 428 x^{15} + 450 x^{14} - 148 x^{13} - 409 x^{12} + 374 x^{11} + 1036 x^{10} - 2975 x^{9} + 3655 x^{8} - 2634 x^{7} + 947 x^{6} + 305 x^{5} - 612 x^{4} + 322 x^{3} - 67 x^{2} + x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33626538312268515533112249=3^{10}\cdot 7^{10}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} + \frac{1}{7} a^{11} - \frac{1}{7} a^{10} - \frac{3}{7} a^{9} - \frac{1}{7} a^{8} - \frac{2}{7} a^{7} + \frac{2}{7} a^{6} - \frac{3}{7} a^{5} - \frac{1}{7} a^{3} - \frac{1}{7} a^{2} + \frac{1}{7} a - \frac{3}{7}$, $\frac{1}{7} a^{13} - \frac{2}{7} a^{11} - \frac{2}{7} a^{10} + \frac{2}{7} a^{9} - \frac{1}{7} a^{8} - \frac{3}{7} a^{7} + \frac{2}{7} a^{6} + \frac{3}{7} a^{5} - \frac{1}{7} a^{4} + \frac{2}{7} a^{2} + \frac{3}{7} a + \frac{3}{7}$, $\frac{1}{7} a^{14} + \frac{2}{7} a^{8} - \frac{2}{7} a^{7} + \frac{1}{7} a^{2} - \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{15} + \frac{2}{7} a^{9} - \frac{2}{7} a^{8} + \frac{1}{7} a^{3} - \frac{2}{7} a^{2} + \frac{1}{7} a$, $\frac{1}{7} a^{16} + \frac{2}{7} a^{10} - \frac{2}{7} a^{9} + \frac{1}{7} a^{4} - \frac{2}{7} a^{3} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{17} + \frac{2}{7} a^{11} - \frac{2}{7} a^{10} + \frac{1}{7} a^{5} - \frac{2}{7} a^{4} + \frac{1}{7} a^{3}$, $\frac{1}{50699467} a^{18} - \frac{9}{50699467} a^{17} - \frac{414041}{7242781} a^{16} + \frac{1458157}{50699467} a^{15} + \frac{1723915}{50699467} a^{14} + \frac{1301}{29323} a^{13} - \frac{2248522}{50699467} a^{12} - \frac{18209069}{50699467} a^{11} + \frac{5342430}{50699467} a^{10} + \frac{6766273}{50699467} a^{9} - \frac{10902657}{50699467} a^{8} - \frac{3823174}{50699467} a^{7} - \frac{24509865}{50699467} a^{6} - \frac{19565878}{50699467} a^{5} - \frac{23275856}{50699467} a^{4} - \frac{1865545}{50699467} a^{3} + \frac{3134961}{7242781} a^{2} + \frac{2628901}{50699467} a + \frac{11121605}{50699467}$, $\frac{1}{12826965151} a^{19} + \frac{9}{986689627} a^{18} + \frac{17175408}{1832423593} a^{17} - \frac{42942520}{1166087741} a^{16} + \frac{373764003}{12826965151} a^{15} - \frac{65908385}{1832423593} a^{14} + \frac{838873669}{12826965151} a^{13} + \frac{2673961}{12826965151} a^{12} - \frac{28996712}{1166087741} a^{11} + \frac{452920397}{1166087741} a^{10} + \frac{86663040}{557694137} a^{9} + \frac{4894690390}{12826965151} a^{8} + \frac{206199527}{986689627} a^{7} + \frac{238355954}{12826965151} a^{6} - \frac{2517547608}{12826965151} a^{5} - \frac{1362939924}{12826965151} a^{4} - \frac{353265945}{1832423593} a^{3} + \frac{1449478361}{12826965151} a^{2} - \frac{84960948}{12826965151} a - \frac{635834974}{1832423593}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 58001.1435756 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times D_5$ (as 20T8):
| A solvable group of order 40 |
| The 16 conjugacy class representatives for $C_2^2\times D_5$ |
| Character table for $C_2^2\times D_5$ |
Intermediate fields
| \(\Q(\sqrt{357}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{17}, \sqrt{21})\), 5.1.14161.1, 10.2.5798839393557.1, 10.2.341108199621.1, 10.2.3409076657.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |