Normalized defining polynomial
\( x^{20} - 8 x^{19} + 26 x^{18} - 34 x^{17} - 25 x^{16} + 162 x^{15} - 258 x^{14} + 230 x^{13} - 210 x^{12} + 210 x^{11} + 12 x^{10} - 174 x^{9} - 40 x^{8} - 10 x^{7} + 466 x^{6} - 426 x^{5} + x^{4} + 126 x^{3} - 10 x^{2} - 20 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33589091856528432921837568=2^{28}\cdot 277^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 277$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2}$, $\frac{1}{50} a^{17} + \frac{1}{5} a^{16} - \frac{3}{50} a^{15} - \frac{7}{50} a^{14} + \frac{11}{50} a^{13} + \frac{1}{5} a^{12} + \frac{1}{50} a^{11} - \frac{11}{50} a^{10} - \frac{7}{50} a^{9} + \frac{2}{25} a^{8} - \frac{9}{50} a^{7} - \frac{19}{50} a^{6} - \frac{17}{50} a^{5} + \frac{8}{25} a^{4} - \frac{17}{50} a^{3} + \frac{17}{50} a^{2} - \frac{2}{25} a - \frac{3}{25}$, $\frac{1}{50} a^{18} - \frac{3}{50} a^{16} - \frac{1}{25} a^{15} + \frac{3}{25} a^{14} + \frac{1}{50} a^{12} + \frac{2}{25} a^{11} + \frac{3}{50} a^{10} + \frac{12}{25} a^{9} - \frac{12}{25} a^{8} - \frac{2}{25} a^{7} - \frac{1}{25} a^{6} - \frac{7}{25} a^{5} + \frac{23}{50} a^{4} + \frac{6}{25} a^{3} - \frac{12}{25} a^{2} - \frac{8}{25} a - \frac{3}{10}$, $\frac{1}{1221484289203285850} a^{19} - \frac{1479903245483233}{610742144601642925} a^{18} - \frac{868974675794448}{122148428920328585} a^{17} + \frac{66423580828394613}{610742144601642925} a^{16} + \frac{158678254609224669}{1221484289203285850} a^{15} + \frac{81065398760734393}{1221484289203285850} a^{14} - \frac{98974522459979948}{610742144601642925} a^{13} - \frac{71372129819252107}{1221484289203285850} a^{12} - \frac{151528513064954144}{610742144601642925} a^{11} - \frac{71767997734938376}{610742144601642925} a^{10} - \frac{455977228206383719}{1221484289203285850} a^{9} - \frac{167442411544495339}{610742144601642925} a^{8} - \frac{6262554828141669}{244296857840657170} a^{7} - \frac{504220236230075169}{1221484289203285850} a^{6} + \frac{202507091538588228}{610742144601642925} a^{5} + \frac{122609871134825837}{1221484289203285850} a^{4} - \frac{63062312868338207}{1221484289203285850} a^{3} + \frac{85531315697768467}{610742144601642925} a^{2} - \frac{454844763666173501}{1221484289203285850} a + \frac{216631231664828251}{610742144601642925}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 99474.0429052 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n285 |
| Character table for t20n285 is not computed |
Intermediate fields
| 10.2.5441006848.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 277 | Data not computed | ||||||