Normalized defining polynomial
\( x^{20} - x^{19} - 28 x^{18} + 35 x^{17} + 84 x^{16} + 351 x^{15} - 3662 x^{14} + 7975 x^{13} + 145 x^{12} - 57716 x^{11} + 212402 x^{10} - 414046 x^{9} + 440077 x^{8} - 298497 x^{7} + 756959 x^{6} - 2216604 x^{5} + 3131232 x^{4} - 2071744 x^{3} + 404056 x^{2} + 312636 x - 260564 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3281763883433900353692902429195567104=2^{16}\cdot 33769^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 33769$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{16} - \frac{1}{2} a^{15} - \frac{1}{4} a^{14} - \frac{1}{2} a^{13} + \frac{1}{4} a^{12} + \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{18} + \frac{1}{4} a^{16} + \frac{1}{4} a^{15} + \frac{1}{4} a^{14} - \frac{1}{4} a^{13} + \frac{1}{4} a^{12} + \frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{24387036403488898441517276426283881893727715683072820603073755064} a^{19} - \frac{1647429921579273693219649224414472644774040058714836877382999865}{24387036403488898441517276426283881893727715683072820603073755064} a^{18} + \frac{354292335721524667956295998959672612720257981109865567810816989}{3048379550436112305189659553285485236715964460384102575384219383} a^{17} - \frac{3498802954920491229133184615015024328096684102203743257477373103}{24387036403488898441517276426283881893727715683072820603073755064} a^{16} - \frac{5040156181286040975964842263787427803976997301658801810991916407}{12193518201744449220758638213141940946863857841536410301536877532} a^{15} + \frac{10466070700481188550622666378087501260985948720743803497674609831}{24387036403488898441517276426283881893727715683072820603073755064} a^{14} + \frac{1224468391533550103624360786841896347815142946196716899584361414}{3048379550436112305189659553285485236715964460384102575384219383} a^{13} + \frac{1897226672914347874516489859751074938917815016528693496363352839}{24387036403488898441517276426283881893727715683072820603073755064} a^{12} + \frac{2515356545158187286706249951852983827842258485181766800029063115}{24387036403488898441517276426283881893727715683072820603073755064} a^{11} - \frac{1058749680184568511497201825775382435465762303910914822767608826}{3048379550436112305189659553285485236715964460384102575384219383} a^{10} - \frac{221998705423232766288736380596299662962069532594127778831810271}{3048379550436112305189659553285485236715964460384102575384219383} a^{9} - \frac{244573554608013940576099823971844991444728948840089186659455892}{3048379550436112305189659553285485236715964460384102575384219383} a^{8} + \frac{9767911551948707382912868791482770849639826380191770743580614649}{24387036403488898441517276426283881893727715683072820603073755064} a^{7} + \frac{6386128000198158447561938888640249184015369447117681612554722531}{24387036403488898441517276426283881893727715683072820603073755064} a^{6} - \frac{962745380078528221809010570373169141894477184795438913892597861}{24387036403488898441517276426283881893727715683072820603073755064} a^{5} - \frac{335026569043514899426878532219964220410224995370741046650794339}{12193518201744449220758638213141940946863857841536410301536877532} a^{4} - \frac{4451909083943197641411552666705187344524826517893499367217868187}{12193518201744449220758638213141940946863857841536410301536877532} a^{3} - \frac{3672600427098706985050269239713145967122319588746158303608017863}{12193518201744449220758638213141940946863857841536410301536877532} a^{2} + \frac{836458976898560167115213594324504679550766057294328308966780213}{3048379550436112305189659553285485236715964460384102575384219383} a - \frac{1964136576275066959229243691872699228778866604355956289187718673}{6096759100872224610379319106570970473431928920768205150768438766}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31286327802.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n966 are not computed |
| Character table for t20n966 is not computed |
Intermediate fields
| 5.5.135076.1, 10.10.616133159929744.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.8.8.3 | $x^{8} + 2 x^{7} + 2 x^{6} + 16$ | $2$ | $4$ | $8$ | $C_2^3: C_4$ | $[2, 2, 2]^{4}$ | |
| 33769 | Data not computed | ||||||