Normalized defining polynomial
\( x^{20} - 6 x^{19} + 3 x^{18} + 70 x^{17} - 298 x^{16} + 630 x^{15} - 1110 x^{14} + 2728 x^{13} - 5549 x^{12} + 6780 x^{11} - 4793 x^{10} + 3658 x^{9} - 1643 x^{8} + 180 x^{7} - 644 x^{6} + 2878 x^{5} + 989 x^{4} + 270 x^{3} - 200 x^{2} - 52 x - 23 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(32498348544416645150459976220672=2^{20}\cdot 61^{7}\cdot 397^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{17} a^{18} + \frac{3}{17} a^{17} - \frac{3}{17} a^{16} - \frac{5}{17} a^{15} - \frac{6}{17} a^{14} - \frac{7}{17} a^{13} - \frac{6}{17} a^{12} - \frac{2}{17} a^{11} + \frac{3}{17} a^{10} + \frac{5}{17} a^{9} - \frac{2}{17} a^{8} + \frac{7}{17} a^{7} - \frac{1}{17} a^{6} + \frac{8}{17} a^{5} + \frac{5}{17} a^{4} + \frac{7}{17} a^{3} + \frac{3}{17} a^{2} - \frac{2}{17} a + \frac{6}{17}$, $\frac{1}{14184302763700763492772600919558468705} a^{19} + \frac{93979076396136518253273050582425812}{14184302763700763492772600919558468705} a^{18} - \frac{4063206951941179864006196637526426201}{14184302763700763492772600919558468705} a^{17} - \frac{68778106731200016753441922409179739}{834370750805927264280741230562262865} a^{16} - \frac{2363560198536619623865653147586903562}{14184302763700763492772600919558468705} a^{15} + \frac{6807983111767404869893847245846797484}{14184302763700763492772600919558468705} a^{14} - \frac{372528328125622914911142738784138534}{834370750805927264280741230562262865} a^{13} - \frac{2532374559589024753453111329321297061}{14184302763700763492772600919558468705} a^{12} + \frac{3923641551377003122105249936061120758}{14184302763700763492772600919558468705} a^{11} + \frac{116586825787463132522833419398323162}{834370750805927264280741230562262865} a^{10} + \frac{2607149181092863778329669865625822289}{14184302763700763492772600919558468705} a^{9} + \frac{971899146905530005371203113903595402}{2836860552740152698554520183911693741} a^{8} - \frac{855798145230220393870094547964448628}{14184302763700763492772600919558468705} a^{7} + \frac{6143667728849627874924634317217672101}{14184302763700763492772600919558468705} a^{6} - \frac{4764996873454836073755415209895261541}{14184302763700763492772600919558468705} a^{5} - \frac{1182303178171779437349819615652075855}{2836860552740152698554520183911693741} a^{4} - \frac{6809222115753553618659928894196687841}{14184302763700763492772600919558468705} a^{3} - \frac{3500209276227537381204575218578879643}{14184302763700763492772600919558468705} a^{2} + \frac{5024743847123054848458890303711343321}{14184302763700763492772600919558468705} a + \frac{427235992112819019515620778829936436}{14184302763700763492772600919558468705}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 64795374.1636 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 265 conjugacy class representatives for t20n989 are not computed |
| Character table for t20n989 is not computed |
Intermediate fields
| 5.5.24217.1, 10.6.36632830391296.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.4 | $x^{10} - 5 x^{8} + 14 x^{6} - 22 x^{4} + 17 x^{2} - 37$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.10.4 | $x^{10} - 5 x^{8} + 14 x^{6} - 22 x^{4} + 17 x^{2} - 37$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||