Normalized defining polynomial
\( x^{20} - 2 x^{19} + 13 x^{18} - 32 x^{17} - 12 x^{16} - 312 x^{15} + 31 x^{14} + 117 x^{13} + 1446 x^{12} + 444 x^{11} - 1359 x^{10} - 1629 x^{9} - 1789 x^{8} + 2027 x^{7} + 2918 x^{6} - 1399 x^{5} - 334 x^{4} - 1285 x^{3} + 540 x^{2} + 1735 x - 995 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(319013585509694102896209423828125=5^{11}\cdot 19^{8}\cdot 29^{8}\cdot 769\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 29, 769$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{11} a^{18} + \frac{2}{11} a^{17} - \frac{5}{11} a^{16} - \frac{5}{11} a^{15} - \frac{1}{11} a^{14} + \frac{1}{11} a^{13} - \frac{5}{11} a^{12} + \frac{5}{11} a^{11} + \frac{1}{11} a^{10} - \frac{1}{11} a^{9} - \frac{3}{11} a^{8} + \frac{2}{11} a^{7} + \frac{2}{11} a^{6} + \frac{3}{11} a^{5} - \frac{4}{11} a^{4} + \frac{3}{11} a^{3} + \frac{2}{11} a^{2} - \frac{2}{11} a - \frac{4}{11}$, $\frac{1}{2824598571846636240218165423454516868502} a^{19} - \frac{6273797402929225656661381834401135629}{256781688349694203656196856677683351682} a^{18} - \frac{311066358515333872690302075599538535011}{1412299285923318120109082711727258434251} a^{17} + \frac{242849416260903329459881519468158462978}{1412299285923318120109082711727258434251} a^{16} - \frac{426968843250007851011450514150260668001}{1412299285923318120109082711727258434251} a^{15} + \frac{602647587830028058150974907850337764496}{1412299285923318120109082711727258434251} a^{14} + \frac{703559810416105432553416657046605734571}{2824598571846636240218165423454516868502} a^{13} + \frac{334316770422510990777294473414373860534}{1412299285923318120109082711727258434251} a^{12} - \frac{524572691382732155173913067106676496640}{1412299285923318120109082711727258434251} a^{11} - \frac{689267592606468885995889487491308679890}{1412299285923318120109082711727258434251} a^{10} + \frac{1195019712366618537054894055071925303511}{2824598571846636240218165423454516868502} a^{9} - \frac{369277879093796275395549807938423896026}{1412299285923318120109082711727258434251} a^{8} - \frac{1295341443330627340501524266041482108239}{2824598571846636240218165423454516868502} a^{7} - \frac{484370873762371463515964984880668449197}{1412299285923318120109082711727258434251} a^{6} - \frac{166023597888964180733744782180119941601}{1412299285923318120109082711727258434251} a^{5} + \frac{108863863779307676321895832232206486905}{256781688349694203656196856677683351682} a^{4} - \frac{610719919468707562122291624978973742513}{2824598571846636240218165423454516868502} a^{3} - \frac{373727138639983934810084418607385699036}{1412299285923318120109082711727258434251} a^{2} - \frac{5568556014905922554407067675475740278}{128390844174847101828098428338841675841} a - \frac{783096080640488155002295929935149538539}{2824598571846636240218165423454516868502}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 235787487.271 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 819200 |
| The 275 conjugacy class representatives for t20n955 are not computed |
| Character table for t20n955 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.6.9932496465625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | $16{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.8.0.1 | $x^{8} - x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 19.10.8.1 | $x^{10} - 209 x^{5} + 11552$ | $5$ | $2$ | $8$ | $D_5$ | $[\ ]_{5}^{2}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 769 | Data not computed | ||||||