Normalized defining polynomial
\( x^{20} - 2 x^{19} - 10 x^{18} - 20 x^{17} - 14 x^{16} + 380 x^{15} + 116 x^{14} + 2555 x^{13} - 5209 x^{12} + 7230 x^{11} - 29195 x^{10} + 50437 x^{9} - 54804 x^{8} + 151255 x^{7} - 200155 x^{6} + 184205 x^{5} - 249815 x^{4} + 320775 x^{3} + 21600 x^{2} - 35775 x - 119475 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3177714547665748337794219970703125=5^{15}\cdot 19^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{14} + \frac{1}{10} a^{13} + \frac{1}{5} a^{12} - \frac{1}{2} a^{11} - \frac{1}{10} a^{10} + \frac{1}{5} a^{9} + \frac{3}{10} a^{8} - \frac{3}{10} a^{7} + \frac{2}{5} a^{6} - \frac{1}{2} a^{5} + \frac{1}{10} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{15} + \frac{1}{10} a^{13} + \frac{3}{10} a^{12} + \frac{2}{5} a^{11} + \frac{3}{10} a^{10} + \frac{1}{10} a^{9} + \frac{2}{5} a^{8} - \frac{3}{10} a^{7} + \frac{1}{10} a^{6} - \frac{2}{5} a^{5} - \frac{1}{10} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{10} a^{16} + \frac{1}{5} a^{13} + \frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{2} a$, $\frac{1}{30} a^{17} + \frac{1}{30} a^{16} - \frac{1}{30} a^{15} + \frac{1}{30} a^{14} + \frac{7}{30} a^{13} - \frac{1}{3} a^{12} + \frac{11}{30} a^{11} - \frac{13}{30} a^{10} + \frac{4}{15} a^{9} - \frac{3}{10} a^{8} + \frac{7}{30} a^{7} - \frac{7}{15} a^{6} - \frac{1}{10} a^{5} - \frac{11}{30} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{900} a^{18} - \frac{2}{225} a^{17} - \frac{7}{900} a^{16} + \frac{11}{450} a^{15} - \frac{11}{900} a^{14} + \frac{44}{225} a^{13} + \frac{19}{180} a^{12} + \frac{73}{180} a^{11} - \frac{167}{450} a^{10} - \frac{19}{100} a^{9} + \frac{181}{900} a^{8} - \frac{7}{450} a^{7} + \frac{3}{20} a^{6} - \frac{61}{180} a^{5} + \frac{13}{45} a^{4} - \frac{37}{90} a^{3} - \frac{11}{36} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{1320000968592169160178910751650531837317331629480600} a^{19} - \frac{625753038158522881966294643454674414175565814111}{1320000968592169160178910751650531837317331629480600} a^{18} + \frac{11982987714172509347345420553787447185860553623897}{1320000968592169160178910751650531837317331629480600} a^{17} - \frac{41831399223069709364395038518249238175020051130517}{1320000968592169160178910751650531837317331629480600} a^{16} + \frac{3182548634111205048758050411171545287947835010763}{1320000968592169160178910751650531837317331629480600} a^{15} + \frac{385366876068088697137434777091061777477728687189}{32195145575418760004363676869525166763837356816600} a^{14} - \frac{66115933912806239421520906575297832436584186565173}{1320000968592169160178910751650531837317331629480600} a^{13} + \frac{9532665666222349974737491164286648089272963113367}{33000024214804229004472768791263295932933290737015} a^{12} + \frac{9450002024112078489878315936382428714748333880171}{32195145575418760004363676869525166763837356816600} a^{11} + \frac{195113206982696214070142758968100595258807938644437}{440000322864056386726303583883510612439110543160200} a^{10} + \frac{292448816655807289659464570441944081802324336930147}{660000484296084580089455375825265918658665814740300} a^{9} + \frac{113333321175731430194754593931087077204792598601723}{1320000968592169160178910751650531837317331629480600} a^{8} - \frac{100126932882031359704000721018308310576965093796521}{440000322864056386726303583883510612439110543160200} a^{7} + \frac{7172315035268278240114532284623220700930401986917}{26400019371843383203578215033010636746346632589612} a^{6} + \frac{96853370135043156051546828994313176102468961277259}{264000193718433832035782150330106367463466325896120} a^{5} - \frac{3621179869144064881237166293361137232729242297475}{26400019371843383203578215033010636746346632589612} a^{4} + \frac{70955481130740205412004077683929952140676735121927}{264000193718433832035782150330106367463466325896120} a^{3} + \frac{508456603461207877996877334467899259297570445259}{4400003228640563867263035838835106124391105431602} a^{2} - \frac{346739820764071175593097034995133073682582256860}{733333871440093977877172639805851020731850905267} a - \frac{716301947487317211738276736258783484695605238545}{1955556990506917274339127039482269388618269080712}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2565467606.734227 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.45125.1, 5.1.16290125.1, 10.2.1326840862578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $19$ | 19.10.9.1 | $x^{10} - 19$ | $10$ | $1$ | $9$ | $D_{10}$ | $[\ ]_{10}^{2}$ |
| 19.10.9.1 | $x^{10} - 19$ | $10$ | $1$ | $9$ | $D_{10}$ | $[\ ]_{10}^{2}$ |