Normalized defining polynomial
\( x^{20} - 2 x^{19} + 2 x^{18} + 4 x^{17} - 10 x^{16} + 104 x^{15} + 675 x^{14} + 770 x^{13} + 1759 x^{12} - 195 x^{11} - 4565 x^{10} + 3085 x^{9} + 10111 x^{8} + 16588 x^{7} + 38727 x^{6} + 13729 x^{5} - 45405 x^{4} - 23166 x^{3} - 94770 x^{2} + 59049 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(315252767308030713643991421826778089=47^{8}\cdot 163^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $47, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{45} a^{16} + \frac{16}{45} a^{15} - \frac{7}{45} a^{14} + \frac{13}{45} a^{13} - \frac{1}{45} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{3} a^{7} - \frac{4}{9} a^{6} - \frac{4}{9} a^{5} - \frac{14}{45} a^{4} + \frac{1}{45} a^{3} + \frac{2}{5} a^{2} + \frac{13}{45} a + \frac{1}{5}$, $\frac{1}{405} a^{17} - \frac{2}{405} a^{16} - \frac{32}{81} a^{15} + \frac{4}{405} a^{14} - \frac{2}{81} a^{13} + \frac{23}{405} a^{12} - \frac{1}{3} a^{11} - \frac{8}{81} a^{10} - \frac{37}{81} a^{9} - \frac{13}{27} a^{8} - \frac{22}{81} a^{7} - \frac{31}{81} a^{6} - \frac{14}{405} a^{5} - \frac{17}{405} a^{4} + \frac{2}{9} a^{3} - \frac{41}{405} a^{2} - \frac{1}{9} a - \frac{2}{5}$, $\frac{1}{3645} a^{18} - \frac{2}{3645} a^{17} + \frac{2}{3645} a^{16} - \frac{1454}{3645} a^{15} - \frac{739}{3645} a^{14} + \frac{104}{3645} a^{13} - \frac{56}{135} a^{12} + \frac{154}{729} a^{11} + \frac{206}{729} a^{10} - \frac{13}{243} a^{9} - \frac{184}{729} a^{8} - \frac{112}{729} a^{7} - \frac{824}{3645} a^{6} - \frac{1637}{3645} a^{5} - \frac{152}{405} a^{4} + \frac{1336}{3645} a^{3} + \frac{139}{405} a^{2} - \frac{16}{45} a + \frac{2}{5}$, $\frac{1}{85220652806464550541561825502955561139878502345} a^{19} + \frac{2903715819464735839564928053555833316152283}{85220652806464550541561825502955561139878502345} a^{18} - \frac{1935458166659264848526431903745350519057639}{6555434831266503887812448115611966241529115565} a^{17} - \frac{530897560526298628105510980768261823677881552}{85220652806464550541561825502955561139878502345} a^{16} - \frac{6713699762212998744274686933994778183246901818}{17044130561292910108312365100591112227975700469} a^{15} - \frac{2339973743650061320477043609836866935785778258}{17044130561292910108312365100591112227975700469} a^{14} + \frac{464057100718686571838765004822513777158520526}{1893792284588101123145818344510123580886188941} a^{13} - \frac{5596378602137879376469919376300675343283424271}{85220652806464550541561825502955561139878502345} a^{12} - \frac{4451699214260288368383263544817506794113877440}{17044130561292910108312365100591112227975700469} a^{11} + \frac{1869779162918534652215754149019172461474309302}{5681376853764303369437455033530370742658566823} a^{10} - \frac{305716515462095693804586544935284951612589478}{1311086966253300777562489623122393248305823113} a^{9} + \frac{3075441666584264656156838531477399356008580217}{17044130561292910108312365100591112227975700469} a^{8} - \frac{21295318496872797859541066356094254567001853824}{85220652806464550541561825502955561139878502345} a^{7} + \frac{38683043645307401296472987853839582899288555933}{85220652806464550541561825502955561139878502345} a^{6} - \frac{4183973899276261215629072675289753620380986013}{9468961422940505615729091722550617904430944705} a^{5} + \frac{3118785795149847312820709345792345427814732081}{6555434831266503887812448115611966241529115565} a^{4} - \frac{140702768423874658486202941750045637792741075}{1893792284588101123145818344510123580886188941} a^{3} + \frac{38822894696406772219676108488474954021271230}{210421364954233458127313149390013731209576549} a^{2} + \frac{1855711408588016133488229460085481601226411}{7793383887193831782493079607037545600354687} a - \frac{378396797110765936917145479058289983065901}{12988973145323052970821799345062576000591145}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8004059626.39 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5\times A_4$ (as 20T37):
| A solvable group of order 120 |
| The 16 conjugacy class representatives for $D_5\times A_4$ |
| Character table for $D_5\times A_4$ |
Intermediate fields
| 4.4.26569.1, 5.1.2209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | $15{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $47$ | $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 163 | Data not computed | ||||||