Normalized defining polynomial
\( x^{20} - 6 x^{19} + 15 x^{18} + 14 x^{17} - 193 x^{16} + 360 x^{15} - 488 x^{14} - 4116 x^{13} + 8622 x^{12} + 12570 x^{11} - 35089 x^{10} - 31355 x^{9} + 56360 x^{8} + 89618 x^{7} - 11621 x^{6} - 132550 x^{5} + 27869 x^{4} + 102969 x^{3} - 66339 x^{2} + 40581 x - 21951 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31514842292848707138778668056640625=5^{10}\cdot 13^{6}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{1219044177} a^{18} - \frac{26969809}{406348059} a^{17} - \frac{3118450}{406348059} a^{16} + \frac{84357359}{1219044177} a^{15} - \frac{122102311}{1219044177} a^{14} + \frac{144756767}{406348059} a^{13} - \frac{49282340}{1219044177} a^{12} - \frac{15459676}{406348059} a^{11} - \frac{66195723}{135449353} a^{10} - \frac{60190001}{135449353} a^{9} + \frac{449658659}{1219044177} a^{8} + \frac{479518024}{1219044177} a^{7} - \frac{5656276}{93772629} a^{6} + \frac{577301879}{1219044177} a^{5} - \frac{291201647}{1219044177} a^{4} - \frac{479729113}{1219044177} a^{3} + \frac{591452825}{1219044177} a^{2} - \frac{12751189}{406348059} a - \frac{7507001}{135449353}$, $\frac{1}{311160905928609611207666805609593135363546652621} a^{19} - \frac{25896381530009760566977030973500948097}{103720301976203203735888935203197711787848884207} a^{18} + \frac{10604188221549178295696699281931643772808237096}{103720301976203203735888935203197711787848884207} a^{17} - \frac{2259910287329818440720852524315115748608620512}{311160905928609611207666805609593135363546652621} a^{16} - \frac{22913113594875628531351182504003044644791529291}{311160905928609611207666805609593135363546652621} a^{15} + \frac{360598429930908314963439264274303885734501853}{34573433992067734578629645067732570595949628069} a^{14} - \frac{145639149686339029871824564853497958060955431516}{311160905928609611207666805609593135363546652621} a^{13} + \frac{33134486181479025174628596673067914768566643241}{103720301976203203735888935203197711787848884207} a^{12} - \frac{3859724926482795983687278916820424200611594485}{34573433992067734578629645067732570595949628069} a^{11} + \frac{12126781830529526849602610560105667770377790349}{103720301976203203735888935203197711787848884207} a^{10} + \frac{91959546185146574885899234837930220316096747041}{311160905928609611207666805609593135363546652621} a^{9} - \frac{91054613054773140617288478184253521600572781109}{311160905928609611207666805609593135363546652621} a^{8} + \frac{8210428594954404002879939017749973199496435757}{18303582701682918306333341506446655021385097213} a^{7} - \frac{54464927896041366140826308805746779225243720240}{311160905928609611207666805609593135363546652621} a^{6} - \frac{3764172945251827859101640802930451478793096620}{311160905928609611207666805609593135363546652621} a^{5} - \frac{88129948839585969393751365987938949234796438201}{311160905928609611207666805609593135363546652621} a^{4} - \frac{58511753938410056970679181175035255057767023643}{311160905928609611207666805609593135363546652621} a^{3} - \frac{10143950010371765974812432218252122378681823995}{34573433992067734578629645067732570595949628069} a^{2} + \frac{5520090455674456529240941359000983699045889752}{34573433992067734578629645067732570595949628069} a - \frac{3572635975454925460912452212379466136662938678}{11524477997355911526209881689244190198649876023}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 654238305.599 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n141 |
| Character table for t20n141 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.160801.1, 10.2.177524201991865625.1, 10.10.80803005003125.1, 10.2.56807744637397.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||