Normalized defining polynomial
\( x^{20} - 35 x^{18} + 615 x^{16} - 4 x^{15} - 6940 x^{14} - 110 x^{13} + 54495 x^{12} + 1830 x^{11} - 313455 x^{10} - 14970 x^{9} + 1364105 x^{8} + 71690 x^{7} - 4465140 x^{6} - 91742 x^{5} + 10342455 x^{4} - 542730 x^{3} - 14624315 x^{2} + 1555120 x + 9130279 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(314999046945156250000000000000000=2^{16}\cdot 5^{22}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2114} a^{18} - \frac{47}{1057} a^{17} - \frac{185}{2114} a^{16} - \frac{219}{1057} a^{15} + \frac{313}{2114} a^{14} - \frac{115}{1057} a^{13} - \frac{59}{2114} a^{12} + \frac{248}{1057} a^{11} + \frac{16}{1057} a^{10} - \frac{865}{2114} a^{9} + \frac{347}{2114} a^{8} + \frac{373}{1057} a^{7} + \frac{221}{2114} a^{6} - \frac{939}{2114} a^{5} + \frac{180}{1057} a^{4} + \frac{12}{1057} a^{3} + \frac{85}{2114} a^{2} - \frac{59}{2114} a - \frac{29}{1057}$, $\frac{1}{122772912320350325903518215430415537138454302558330802} a^{19} - \frac{18566127876464326569231618589356653781133327061309}{122772912320350325903518215430415537138454302558330802} a^{18} - \frac{12003044707756693297672074350250905451163404002062285}{122772912320350325903518215430415537138454302558330802} a^{17} - \frac{16499284391151368690019469007621490639977623188033457}{122772912320350325903518215430415537138454302558330802} a^{16} + \frac{3550929410936178482962595971043343521316443151731939}{122772912320350325903518215430415537138454302558330802} a^{15} + \frac{15117722064641440411621012134582462038029994109502571}{61386456160175162951759107715207768569227151279165401} a^{14} + \frac{7181552700684671541945707947187583917656501825025127}{40924304106783441967839405143471845712818100852776934} a^{13} + \frac{1227038154017431826578586819005505610449481329168768}{8769493737167880421679872530743966938461021611309343} a^{12} - \frac{13870856848050130498244921947261971809087017997633209}{61386456160175162951759107715207768569227151279165401} a^{11} + \frac{11985920483324548904997170011770840273835768099379381}{61386456160175162951759107715207768569227151279165401} a^{10} + \frac{44096224512640769710189404117227400728920441933130791}{122772912320350325903518215430415537138454302558330802} a^{9} + \frac{51787357047723555522249507287100274798615625843566639}{122772912320350325903518215430415537138454302558330802} a^{8} + \frac{3992805374421289370827855331299479686135824028173579}{40924304106783441967839405143471845712818100852776934} a^{7} + \frac{3815199295799468694084104884401123940278819986940371}{17538987474335760843359745061487933876922043222618686} a^{6} - \frac{11653367382453466910294605821659286651298340958696509}{61386456160175162951759107715207768569227151279165401} a^{5} - \frac{6283390743295069593077942397882447515445323137380253}{20462152053391720983919702571735922856409050426388467} a^{4} - \frac{2818432664194595356875492941038876913480176250736917}{5846329158111920281119915020495977958974014407539562} a^{3} + \frac{8647786877541814540430352426540318062465291691418292}{20462152053391720983919702571735922856409050426388467} a^{2} - \frac{28284090530550863531404004954299236475837730667044563}{61386456160175162951759107715207768569227151279165401} a - \frac{21905958744030298179048596314286055255951484990569295}{122772912320350325903518215430415537138454302558330802}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 420889467.5752704 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{85}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{17})\), 5.1.50000.1, 10.2.3549642500000000.1, 10.2.17748212500000000.1, 10.2.12500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |