Normalized defining polynomial
\( x^{20} - 3 x^{19} + 8 x^{18} - 20 x^{17} - 15 x^{16} + 91 x^{15} - 97 x^{14} - 16 x^{13} + 366 x^{12} - 516 x^{11} - 7 x^{10} + 1308 x^{9} - 2620 x^{8} + 1579 x^{7} + 1856 x^{6} - 6733 x^{5} + 10200 x^{4} - 9042 x^{3} + 5879 x^{2} - 2359 x + 109 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3110398437339049957275390625=5^{15}\cdot 269^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 269$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{240989369428415920656528684420777361} a^{19} + \frac{62090926597435603459490991725644429}{240989369428415920656528684420777361} a^{18} - \frac{67456393156628160564871722819846019}{240989369428415920656528684420777361} a^{17} + \frac{57704448955987651373334263004878910}{240989369428415920656528684420777361} a^{16} - \frac{83885488067366741745035500230319218}{240989369428415920656528684420777361} a^{15} + \frac{6314564063797461341486690033109236}{240989369428415920656528684420777361} a^{14} - \frac{1465627309359575976377978193806785}{240989369428415920656528684420777361} a^{13} - \frac{65581735914234985601205233656110124}{240989369428415920656528684420777361} a^{12} - \frac{101706393088914856689059858571318046}{240989369428415920656528684420777361} a^{11} - \frac{75683792002430445836206029740190104}{240989369428415920656528684420777361} a^{10} - \frac{93104916384673387649417831325892539}{240989369428415920656528684420777361} a^{9} - \frac{75584993036892558243650752766770848}{240989369428415920656528684420777361} a^{8} + \frac{5457672149328959309649975736028279}{240989369428415920656528684420777361} a^{7} + \frac{25545673899998454311786547418686951}{240989369428415920656528684420777361} a^{6} - \frac{28614500425895984397201971621776688}{240989369428415920656528684420777361} a^{5} - \frac{47983178507807526591171222245966366}{240989369428415920656528684420777361} a^{4} + \frac{69066351572392507253560357884606677}{240989369428415920656528684420777361} a^{3} + \frac{52441546828676077951890024522753718}{240989369428415920656528684420777361} a^{2} + \frac{31121646684974732081188358453490398}{240989369428415920656528684420777361} a - \frac{120053277152392105357020645595273835}{240989369428415920656528684420777361}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 535138.88971 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n797 are not computed |
| Character table for t20n797 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.1.33625.1, 10.2.5653203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 269 | Data not computed | ||||||