Normalized defining polynomial
\( x^{20} - 2 x^{19} - x^{18} - 6 x^{17} + 3 x^{16} - 24 x^{15} + 29 x^{14} + 52 x^{13} + 53 x^{12} - 50 x^{11} - 105 x^{10} - 50 x^{9} + 53 x^{8} + 52 x^{7} + 29 x^{6} - 24 x^{5} + 3 x^{4} - 6 x^{3} - x^{2} - 2 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3101676347663598183510015625=5^{6}\cdot 19^{8}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2}$, $\frac{1}{38} a^{12} - \frac{3}{19} a^{11} + \frac{1}{19} a^{10} - \frac{1}{19} a^{9} - \frac{2}{19} a^{8} - \frac{7}{19} a^{7} + \frac{6}{19} a^{6} - \frac{7}{19} a^{5} - \frac{2}{19} a^{4} - \frac{1}{19} a^{3} + \frac{1}{19} a^{2} + \frac{13}{38} a - \frac{9}{19}$, $\frac{1}{38} a^{13} + \frac{2}{19} a^{11} - \frac{9}{38} a^{10} + \frac{3}{38} a^{9} - \frac{1}{2} a^{8} - \frac{15}{38} a^{7} + \frac{1}{38} a^{6} + \frac{7}{38} a^{5} - \frac{7}{38} a^{4} + \frac{9}{38} a^{3} + \frac{3}{19} a^{2} + \frac{3}{38} a - \frac{13}{38}$, $\frac{1}{38} a^{14} - \frac{2}{19} a^{11} - \frac{5}{38} a^{10} - \frac{11}{38} a^{9} + \frac{1}{38} a^{8} - \frac{1}{2} a^{7} - \frac{3}{38} a^{6} + \frac{11}{38} a^{5} - \frac{13}{38} a^{4} + \frac{7}{19} a^{3} - \frac{5}{38} a^{2} + \frac{11}{38} a + \frac{15}{38}$, $\frac{1}{38} a^{15} + \frac{9}{38} a^{11} - \frac{3}{38} a^{10} - \frac{7}{38} a^{9} + \frac{3}{38} a^{8} + \frac{17}{38} a^{7} - \frac{17}{38} a^{6} + \frac{7}{38} a^{5} - \frac{1}{19} a^{4} - \frac{13}{38} a^{3} - \frac{1}{2} a^{2} - \frac{9}{38} a + \frac{2}{19}$, $\frac{1}{38} a^{16} - \frac{3}{19} a^{11} - \frac{3}{19} a^{10} + \frac{1}{19} a^{9} - \frac{2}{19} a^{8} + \frac{7}{19} a^{7} - \frac{3}{19} a^{6} - \frac{9}{38} a^{5} + \frac{2}{19} a^{4} + \frac{9}{19} a^{3} - \frac{4}{19} a^{2} - \frac{9}{19} a + \frac{5}{19}$, $\frac{1}{38} a^{17} - \frac{2}{19} a^{11} - \frac{5}{38} a^{10} + \frac{3}{38} a^{9} + \frac{9}{38} a^{8} + \frac{5}{38} a^{7} + \frac{3}{19} a^{6} + \frac{15}{38} a^{5} + \frac{13}{38} a^{4} - \frac{1}{38} a^{3} + \frac{13}{38} a^{2} - \frac{7}{38} a - \frac{13}{38}$, $\frac{1}{722} a^{18} - \frac{5}{722} a^{17} - \frac{3}{361} a^{16} - \frac{1}{361} a^{15} - \frac{2}{361} a^{14} + \frac{9}{722} a^{13} + \frac{3}{361} a^{12} + \frac{63}{722} a^{11} - \frac{9}{722} a^{10} - \frac{181}{722} a^{9} - \frac{47}{722} a^{8} + \frac{117}{361} a^{7} + \frac{60}{361} a^{6} - \frac{257}{722} a^{5} - \frac{289}{722} a^{4} - \frac{21}{722} a^{3} - \frac{60}{361} a^{2} + \frac{147}{722} a + \frac{29}{361}$, $\frac{1}{3610} a^{19} + \frac{1}{1805} a^{18} - \frac{3}{3610} a^{17} + \frac{16}{1805} a^{16} + \frac{1}{3610} a^{15} - \frac{13}{1805} a^{13} - \frac{47}{3610} a^{12} + \frac{9}{361} a^{11} - \frac{13}{361} a^{10} - \frac{101}{361} a^{9} - \frac{1}{38} a^{8} - \frac{166}{1805} a^{7} - \frac{861}{3610} a^{6} - \frac{148}{361} a^{5} - \frac{619}{3610} a^{4} + \frac{446}{1805} a^{3} + \frac{556}{1805} a^{2} - \frac{243}{3610} a - \frac{747}{1805}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1202623.46886 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:D_5$ (as 20T85):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $C_2\times C_2^4:D_5$ |
| Character table for $C_2\times C_2^4:D_5$ |
Intermediate fields
| 5.5.667489.1, 10.2.2227707825605.1, 10.6.55692695640125.1, 10.6.11138539128025.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $43$ | 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |