Normalized defining polynomial
\( x^{20} - 7 x^{19} + 12 x^{18} + 21 x^{17} - 92 x^{16} + 90 x^{15} + 10 x^{14} + 17 x^{13} - 240 x^{12} - 30 x^{11} + 1136 x^{10} - 1437 x^{9} + 246 x^{8} + 1018 x^{7} - 1301 x^{6} - 123 x^{5} + 581 x^{4} + 101 x^{3} - 124 x^{2} - 5 x - 7 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3101676347663598183510015625=5^{6}\cdot 19^{8}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{19} a^{15} + \frac{5}{19} a^{14} - \frac{2}{19} a^{13} - \frac{6}{19} a^{12} + \frac{2}{19} a^{11} + \frac{8}{19} a^{10} + \frac{7}{19} a^{9} - \frac{2}{19} a^{8} + \frac{1}{19} a^{7} - \frac{6}{19} a^{6} - \frac{4}{19} a^{5} - \frac{6}{19} a^{4} - \frac{9}{19} a^{3} - \frac{7}{19} a^{2} - \frac{5}{19} a + \frac{4}{19}$, $\frac{1}{19} a^{16} - \frac{8}{19} a^{14} + \frac{4}{19} a^{13} - \frac{6}{19} a^{12} - \frac{2}{19} a^{11} + \frac{5}{19} a^{10} + \frac{1}{19} a^{9} - \frac{8}{19} a^{8} + \frac{8}{19} a^{7} + \frac{7}{19} a^{6} - \frac{5}{19} a^{5} + \frac{2}{19} a^{4} - \frac{8}{19} a^{2} - \frac{9}{19} a - \frac{1}{19}$, $\frac{1}{19} a^{17} + \frac{6}{19} a^{14} - \frac{3}{19} a^{13} + \frac{7}{19} a^{12} + \frac{2}{19} a^{11} + \frac{8}{19} a^{10} - \frac{9}{19} a^{9} - \frac{8}{19} a^{8} - \frac{4}{19} a^{7} + \frac{4}{19} a^{6} + \frac{8}{19} a^{5} + \frac{9}{19} a^{4} - \frac{4}{19} a^{3} - \frac{8}{19} a^{2} - \frac{3}{19} a - \frac{6}{19}$, $\frac{1}{19} a^{18} + \frac{5}{19} a^{14} - \frac{4}{19} a^{11} + \frac{7}{19} a^{9} + \frac{8}{19} a^{8} - \frac{2}{19} a^{7} + \frac{6}{19} a^{6} - \frac{5}{19} a^{5} - \frac{6}{19} a^{4} + \frac{8}{19} a^{3} + \frac{1}{19} a^{2} + \frac{5}{19} a - \frac{5}{19}$, $\frac{1}{38946515115867669273853} a^{19} - \frac{578112276550659755637}{38946515115867669273853} a^{18} - \frac{9232413648506175529}{2049816585045666803887} a^{17} - \frac{478316906833354604082}{38946515115867669273853} a^{16} + \frac{627394305695338407685}{38946515115867669273853} a^{15} + \frac{19146014472641373927893}{38946515115867669273853} a^{14} + \frac{713986618716644416621}{2049816585045666803887} a^{13} + \frac{5462228418827798455486}{38946515115867669273853} a^{12} - \frac{8641142395314386128799}{38946515115867669273853} a^{11} + \frac{9900108537518337534135}{38946515115867669273853} a^{10} - \frac{11194417574157147429503}{38946515115867669273853} a^{9} - \frac{272359744848168775919}{38946515115867669273853} a^{8} + \frac{16614832211877311636128}{38946515115867669273853} a^{7} + \frac{15824030982811472685883}{38946515115867669273853} a^{6} - \frac{9019992564523620677313}{38946515115867669273853} a^{5} - \frac{105274409290410750399}{38946515115867669273853} a^{4} - \frac{8503919983940736175983}{38946515115867669273853} a^{3} - \frac{13677949618528110382228}{38946515115867669273853} a^{2} + \frac{7492410269095857301710}{38946515115867669273853} a - \frac{9649240174914212732765}{38946515115867669273853}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1285248.93015 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:D_5$ (as 20T85):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $C_2\times C_2^4:D_5$ |
| Character table for $C_2\times C_2^4:D_5$ |
Intermediate fields
| 5.5.667489.1, 10.2.2227707825605.1, 10.6.55692695640125.2, 10.6.11138539128025.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $43$ | 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |