Normalized defining polynomial
\( x^{20} - 5 x^{19} + 23 x^{18} - 54 x^{17} + 71 x^{16} + 122 x^{15} - 907 x^{14} + 2565 x^{13} - 4229 x^{12} + 2381 x^{11} + 4295 x^{10} - 13113 x^{9} + 10976 x^{8} + 17838 x^{7} - 47694 x^{6} + 7092 x^{5} + 22104 x^{4} - 5130 x^{3} - 2916 x^{2} - 1134 x - 81 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(30694870289571932375789501953125=3^{10}\cdot 5^{11}\cdot 239^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{15} - \frac{1}{9} a^{14} + \frac{2}{9} a^{12} - \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{3} a^{9} + \frac{4}{9} a^{8} + \frac{2}{9} a^{7} + \frac{2}{9} a^{6} - \frac{1}{3} a^{5} - \frac{1}{9} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{99} a^{17} - \frac{14}{99} a^{15} - \frac{2}{99} a^{14} - \frac{4}{99} a^{13} - \frac{1}{33} a^{12} - \frac{2}{33} a^{11} + \frac{46}{99} a^{10} + \frac{37}{99} a^{9} - \frac{1}{9} a^{8} + \frac{8}{33} a^{7} - \frac{20}{99} a^{6} - \frac{2}{9} a^{5} - \frac{32}{99} a^{4} + \frac{1}{11} a^{3} + \frac{3}{11} a^{2} - \frac{3}{11} a - \frac{2}{11}$, $\frac{1}{6831} a^{18} - \frac{1}{621} a^{17} + \frac{140}{6831} a^{16} - \frac{140}{2277} a^{15} + \frac{623}{6831} a^{14} - \frac{817}{6831} a^{13} + \frac{1820}{6831} a^{12} + \frac{18}{253} a^{11} + \frac{125}{297} a^{10} - \frac{77}{621} a^{9} + \frac{959}{6831} a^{8} - \frac{364}{759} a^{7} - \frac{221}{621} a^{6} + \frac{587}{2277} a^{5} - \frac{95}{253} a^{4} + \frac{80}{759} a^{3} - \frac{47}{759} a^{2} + \frac{91}{253} a + \frac{8}{23}$, $\frac{1}{2559548842146441164029039901983226361807} a^{19} + \frac{36054059924251894475289556012564226}{853182947382147054676346633994408787269} a^{18} + \frac{5305266216588281802071822714361063925}{2559548842146441164029039901983226361807} a^{17} + \frac{137338957664870533949920641241884699685}{2559548842146441164029039901983226361807} a^{16} - \frac{303349024515631721192150033311858288270}{2559548842146441164029039901983226361807} a^{15} + \frac{4426486646976801970130524258006751377}{37094910755745524116362897130191686403} a^{14} + \frac{7945532223804985303372250016863475943}{37094910755745524116362897130191686403} a^{13} - \frac{66916817705413264801792496153032833691}{232686258376949196729912718362111487437} a^{12} - \frac{1017514133574521794244781802598717183189}{2559548842146441164029039901983226361807} a^{11} + \frac{853165532986007800117946680506548433961}{2559548842146441164029039901983226361807} a^{10} + \frac{13363043146329227179058516136295521638}{284394315794049018225448877998136262423} a^{9} + \frac{57845864984662421013525987938355821693}{232686258376949196729912718362111487437} a^{8} - \frac{861052728469352081244788232588826065454}{2559548842146441164029039901983226361807} a^{7} - \frac{910873747071601787402921198210426192750}{2559548842146441164029039901983226361807} a^{6} - \frac{9152708880673287597930236509658161329}{94798105264683006075149625999378754141} a^{5} + \frac{106531179538811990139049665008332673999}{853182947382147054676346633994408787269} a^{4} + \frac{81766391566994719481895853995757347119}{284394315794049018225448877998136262423} a^{3} + \frac{35343145861942617437515808714858419379}{94798105264683006075149625999378754141} a^{2} + \frac{35048748260037169110599332475800169547}{94798105264683006075149625999378754141} a - \frac{44944699647990405071805801979698489287}{94798105264683006075149625999378754141}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29399473.2143 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n144 |
| Character table for t20n144 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | $20$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 239 | Data not computed | ||||||