Normalized defining polynomial
\( x^{20} - 5 x^{19} + 25 x^{18} - 80 x^{17} + 227 x^{16} - 450 x^{15} + 779 x^{14} - 755 x^{13} - 7 x^{12} + 2527 x^{11} - 5899 x^{10} + 9385 x^{9} - 5714 x^{8} - 8718 x^{7} + 11721 x^{6} - 416 x^{5} - 2025 x^{4} + 1207 x^{3} - 1297 x^{2} - 228 x + 361 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(30694870289571932375789501953125=3^{10}\cdot 5^{11}\cdot 239^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{57} a^{18} + \frac{2}{19} a^{16} + \frac{7}{57} a^{15} - \frac{23}{57} a^{14} - \frac{14}{57} a^{13} + \frac{2}{19} a^{12} - \frac{1}{19} a^{11} - \frac{22}{57} a^{10} + \frac{23}{57} a^{9} - \frac{8}{57} a^{8} + \frac{16}{57} a^{7} - \frac{10}{57} a^{6} - \frac{3}{19} a^{5} + \frac{10}{57} a^{4} - \frac{8}{19} a^{3} + \frac{2}{57} a^{2} + \frac{20}{57} a + \frac{1}{3}$, $\frac{1}{150587386069343643846959868151713139683} a^{19} + \frac{914215679195705767959205496110120820}{150587386069343643846959868151713139683} a^{18} + \frac{10041921877218382596652151770882833835}{50195795356447881282319956050571046561} a^{17} + \frac{982599478401238139627736521009770540}{150587386069343643846959868151713139683} a^{16} + \frac{2738628548230594165248135547138481800}{50195795356447881282319956050571046561} a^{15} - \frac{23621644995585607539346547361973104303}{50195795356447881282319956050571046561} a^{14} + \frac{44331281966881795061957397309082275245}{150587386069343643846959868151713139683} a^{13} + \frac{15666656621902924299063276974935489180}{50195795356447881282319956050571046561} a^{12} - \frac{46288356158322290169900988184722964173}{150587386069343643846959868151713139683} a^{11} - \frac{7804079531134875374670383641565502178}{50195795356447881282319956050571046561} a^{10} - \frac{1231261452481928283128960333504419438}{150587386069343643846959868151713139683} a^{9} + \frac{14707528340288823760208934610837499093}{50195795356447881282319956050571046561} a^{8} + \frac{62976159819791566080614246432560227553}{150587386069343643846959868151713139683} a^{7} + \frac{44629492492255591544117272786050358009}{150587386069343643846959868151713139683} a^{6} + \frac{20364929524931781912711991701046064104}{150587386069343643846959868151713139683} a^{5} - \frac{994677693396552614163550586858981276}{13689762369940331258814533468337558153} a^{4} - \frac{70282140916140153649651932900526219489}{150587386069343643846959868151713139683} a^{3} - \frac{15498789263983153744308870641340060781}{50195795356447881282319956050571046561} a^{2} + \frac{32077902993343349702285779970771833706}{150587386069343643846959868151713139683} a + \frac{3568489745844109362446489512395650696}{7925651898386507570892624639563849457}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 102008794.555 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n144 |
| Character table for t20n144 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 239 | Data not computed | ||||||