Normalized defining polynomial
\( x^{20} - 5 x^{19} - 11 x^{18} + 60 x^{17} + 99 x^{16} - 370 x^{15} - 542 x^{14} + 1544 x^{13} + 1221 x^{12} - 3852 x^{11} + 692 x^{10} + 5324 x^{9} - 7678 x^{8} - 1042 x^{7} + 22475 x^{6} + 10809 x^{5} + 5905 x^{4} + 25149 x^{3} + 14148 x^{2} - 2295 x + 81 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(30363970676061540912001893145081=13^{6}\cdot 97^{2}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 97, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{16} + \frac{1}{3} a^{15} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{17} + \frac{4}{9} a^{16} + \frac{1}{3} a^{15} - \frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{2}{9} a^{11} - \frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{2}{9} a^{6} - \frac{4}{9} a^{5} - \frac{4}{9} a^{4} + \frac{1}{3} a^{3} + \frac{1}{9} a^{2}$, $\frac{1}{573327124986622711487477253736118824156437} a^{19} - \frac{20585605497987198257798432951532319404683}{573327124986622711487477253736118824156437} a^{18} + \frac{64469968209773975952252063891084178094695}{573327124986622711487477253736118824156437} a^{17} - \frac{20601685490373123158928144958511536499188}{191109041662207570495825751245372941385479} a^{16} + \frac{9163957033167054808206766966119375352828}{21234337962467507832869527916152549042831} a^{15} + \frac{153932120964941870510221077590494343746364}{573327124986622711487477253736118824156437} a^{14} - \frac{198011834056673517082611880903192111195814}{573327124986622711487477253736118824156437} a^{13} + \frac{138440079529644332891853891120560984350286}{573327124986622711487477253736118824156437} a^{12} + \frac{12156638718190050961113395665131547935137}{191109041662207570495825751245372941385479} a^{11} - \frac{16677247515623618023857852919335350240}{127151724326152741514188789917081131993} a^{10} + \frac{178936211747059401750382020148514592459155}{573327124986622711487477253736118824156437} a^{9} - \frac{92837917376540006211158819851951885389280}{573327124986622711487477253736118824156437} a^{8} + \frac{137466836873504454839137306048417083906806}{573327124986622711487477253736118824156437} a^{7} - \frac{9684529968120001909784110495953580674742}{573327124986622711487477253736118824156437} a^{6} - \frac{170839525253390675767897109944709399703988}{573327124986622711487477253736118824156437} a^{5} + \frac{8951727255081387980173582663573690957462}{21234337962467507832869527916152549042831} a^{4} - \frac{162949375093079587438432452232185502838}{337449749844980995578267953935325970663} a^{3} + \frac{18666675901418521697869159613774719607602}{191109041662207570495825751245372941385479} a^{2} - \frac{29327571706142095878313190806368600425777}{63703013887402523498608583748457647128493} a - \frac{9926538593391383650187410383420304881289}{21234337962467507832869527916152549042831}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29101097.1461 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 208 conjugacy class representatives for t20n412 are not computed |
| Character table for t20n412 is not computed |
Intermediate fields
| 5.5.160801.1, 10.2.56807744637397.1, 10.10.5510351229827509.1, 10.2.2508125275297.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 97 | Data not computed | ||||||
| 401 | Data not computed | ||||||