Properties

Label 20.4.29521807615...8224.2
Degree $20$
Signature $[4, 8]$
Discriminant $2^{10}\cdot 11^{16}\cdot 89^{4}$
Root discriminant $23.63$
Ramified primes $2, 11, 89$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T751

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![109, -57, -551, 1621, -2064, 969, 1037, -2213, 1564, 256, -1577, 1625, -958, 286, 158, -353, 309, -161, 52, -10, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^19 + 52*x^18 - 161*x^17 + 309*x^16 - 353*x^15 + 158*x^14 + 286*x^13 - 958*x^12 + 1625*x^11 - 1577*x^10 + 256*x^9 + 1564*x^8 - 2213*x^7 + 1037*x^6 + 969*x^5 - 2064*x^4 + 1621*x^3 - 551*x^2 - 57*x + 109)
 
gp: K = bnfinit(x^20 - 10*x^19 + 52*x^18 - 161*x^17 + 309*x^16 - 353*x^15 + 158*x^14 + 286*x^13 - 958*x^12 + 1625*x^11 - 1577*x^10 + 256*x^9 + 1564*x^8 - 2213*x^7 + 1037*x^6 + 969*x^5 - 2064*x^4 + 1621*x^3 - 551*x^2 - 57*x + 109, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{19} + 52 x^{18} - 161 x^{17} + 309 x^{16} - 353 x^{15} + 158 x^{14} + 286 x^{13} - 958 x^{12} + 1625 x^{11} - 1577 x^{10} + 256 x^{9} + 1564 x^{8} - 2213 x^{7} + 1037 x^{6} + 969 x^{5} - 2064 x^{4} + 1621 x^{3} - 551 x^{2} - 57 x + 109 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2952180761584785045865268224=2^{10}\cdot 11^{16}\cdot 89^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $23.63$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{73665803401251995277372451898} a^{19} - \frac{18223536482411105555990072407}{73665803401251995277372451898} a^{18} - \frac{1895714791935208866968828120}{36832901700625997638686225949} a^{17} + \frac{9686604800607398935784471495}{73665803401251995277372451898} a^{16} + \frac{4238757003654657069177066585}{36832901700625997638686225949} a^{15} - \frac{9785618921912676138921354033}{73665803401251995277372451898} a^{14} + \frac{12732929955373375317871864673}{73665803401251995277372451898} a^{13} - \frac{3849930298496269514462195333}{73665803401251995277372451898} a^{12} - \frac{4636171514070229772250497429}{73665803401251995277372451898} a^{11} - \frac{2843687652250462022433807591}{73665803401251995277372451898} a^{10} + \frac{4059922201908015587537307101}{73665803401251995277372451898} a^{9} + \frac{1572544302229635689734618057}{36832901700625997638686225949} a^{8} + \frac{6130668970917424864174268665}{73665803401251995277372451898} a^{7} + \frac{5455391080086374203208133555}{73665803401251995277372451898} a^{6} - \frac{15607094087505622771845344553}{73665803401251995277372451898} a^{5} + \frac{35261415396986790298918612163}{73665803401251995277372451898} a^{4} - \frac{10942068066197247109730618051}{73665803401251995277372451898} a^{3} + \frac{7855262419170320036783263039}{36832901700625997638686225949} a^{2} - \frac{35253823278231777264306597445}{73665803401251995277372451898} a - \frac{11540688452273216498517782531}{73665803401251995277372451898}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 790664.600624 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T751:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 81920
The 332 conjugacy class representatives for t20n751 are not computed
Character table for t20n751 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.2.19077940409.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.5.0.1$x^{5} + x^{2} + 1$$1$$5$$0$$C_5$$[\ ]^{5}$
2.5.0.1$x^{5} + x^{2} + 1$$1$$5$$0$$C_5$$[\ ]^{5}$
2.10.10.1$x^{10} - 9 x^{8} + 54 x^{6} - 38 x^{4} + 41 x^{2} - 17$$2$$5$$10$$C_2^4 : C_5$$[2, 2, 2, 2]^{5}$
$11$11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
$89$$\Q_{89}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{89}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{89}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{89}$$x + 3$$1$$1$$0$Trivial$[\ ]$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
89.4.3.2$x^{4} - 801$$4$$1$$3$$C_4$$[\ ]_{4}$
89.4.0.1$x^{4} - x + 27$$1$$4$$0$$C_4$$[\ ]^{4}$
89.4.0.1$x^{4} - x + 27$$1$$4$$0$$C_4$$[\ ]^{4}$