Normalized defining polynomial
\( x^{20} - 5 x^{19} + 15 x^{18} - 16 x^{17} - 18 x^{16} + 115 x^{15} - 107 x^{14} - 263 x^{13} + 983 x^{12} - 1826 x^{11} - 390 x^{10} + 3022 x^{9} - 10770 x^{8} + 7644 x^{7} - 2212 x^{6} - 23316 x^{5} + 41244 x^{4} - 30332 x^{3} + 30980 x^{2} - 2908 x - 404 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2946937245124912611611467841536=2^{26}\cdot 33769^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 33769$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6}$, $\frac{1}{1519342451028557647572896016366437881850462084} a^{19} + \frac{234470114310359525231238088212543092578794349}{1519342451028557647572896016366437881850462084} a^{18} - \frac{78053069466974351964432314132279254581873225}{1519342451028557647572896016366437881850462084} a^{17} + \frac{93418017084556341199891754746529091392023797}{759671225514278823786448008183218940925231042} a^{16} - \frac{176248006911565596323234335141983501995608933}{759671225514278823786448008183218940925231042} a^{15} + \frac{100971400631154971585397499208158234181033397}{1519342451028557647572896016366437881850462084} a^{14} + \frac{464794570554189828503647091985144605194836245}{1519342451028557647572896016366437881850462084} a^{13} + \frac{587168968649382687892159463445445278368332343}{1519342451028557647572896016366437881850462084} a^{12} + \frac{52070857367119274247407018728776393121523495}{1519342451028557647572896016366437881850462084} a^{11} - \frac{181030584813425585550165456736853235096458922}{379835612757139411893224004091609470462615521} a^{10} + \frac{125356423121806247635926254818016618057207549}{759671225514278823786448008183218940925231042} a^{9} - \frac{294841335711762264328810278487835918720743341}{759671225514278823786448008183218940925231042} a^{8} + \frac{171997138767435670568591308778794069742254950}{379835612757139411893224004091609470462615521} a^{7} - \frac{234232849491515989323225248931789570692070989}{759671225514278823786448008183218940925231042} a^{6} + \frac{230746338068895602795228796143162434055855719}{759671225514278823786448008183218940925231042} a^{5} - \frac{93644802838773823278136210190822956610860626}{379835612757139411893224004091609470462615521} a^{4} - \frac{33330572205359977552720468264456362222152648}{379835612757139411893224004091609470462615521} a^{3} - \frac{26252716761003736340558203906162066212851434}{379835612757139411893224004091609470462615521} a^{2} - \frac{143100413452814981830145600859945287422532718}{379835612757139411893224004091609470462615521} a - \frac{68782005659048310153731027802523332281911385}{379835612757139411893224004091609470462615521}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24356973.4708 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 265 conjugacy class representatives for t20n989 are not computed |
| Character table for t20n989 is not computed |
Intermediate fields
| 5.5.135076.1, 10.8.1167713649664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 2.12.26.102 | $x^{12} + 4 x^{6} + 4 x^{5} - 2 x^{4} + 4 x^{3} + 2$ | $12$ | $1$ | $26$ | 12T49 | $[2, 2, 8/3, 8/3]_{3}^{2}$ | |
| 33769 | Data not computed | ||||||