Normalized defining polynomial
\( x^{20} - 5 x^{19} + 3 x^{18} + 37 x^{17} - 100 x^{16} + 155 x^{15} - 375 x^{14} + 621 x^{13} - 169 x^{12} - 356 x^{11} + 152 x^{10} - 712 x^{9} + 378 x^{8} + 1120 x^{7} + 1290 x^{6} - 1396 x^{5} - 2551 x^{4} + 397 x^{3} + 1205 x^{2} - 153 x - 281 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(291196495384907705490560000000000=2^{16}\cdot 5^{10}\cdot 13^{4}\cdot 29^{7}\cdot 31^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 29, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{146787801522031612511151521032780097} a^{19} - \frac{1155311266774500301129086435096536}{146787801522031612511151521032780097} a^{18} + \frac{1194151521648960942435681590358584}{146787801522031612511151521032780097} a^{17} + \frac{2075321953152708570122773093572228}{146787801522031612511151521032780097} a^{16} - \frac{20781462867785184122615388867518442}{146787801522031612511151521032780097} a^{15} + \frac{22935276975540562142673356113146060}{146787801522031612511151521032780097} a^{14} - \frac{51374668185687792041803812192215312}{146787801522031612511151521032780097} a^{13} + \frac{71282570545153547289628720375623586}{146787801522031612511151521032780097} a^{12} + \frac{49822639476428520462949852149600868}{146787801522031612511151521032780097} a^{11} - \frac{38857313391400225534312492559781006}{146787801522031612511151521032780097} a^{10} - \frac{63038737478943228698413899864433568}{146787801522031612511151521032780097} a^{9} - \frac{31358679707707927275089784714865161}{146787801522031612511151521032780097} a^{8} + \frac{25675107066783427076434711106715211}{146787801522031612511151521032780097} a^{7} - \frac{73110827823511341122114831826012664}{146787801522031612511151521032780097} a^{6} - \frac{29746200798338477104068997826467872}{146787801522031612511151521032780097} a^{5} - \frac{39904680018477923978102850918974568}{146787801522031612511151521032780097} a^{4} + \frac{44162248852666710001466113442219972}{146787801522031612511151521032780097} a^{3} + \frac{49437706677703129029974878718270981}{146787801522031612511151521032780097} a^{2} + \frac{51806620235731899601365146575195930}{146787801522031612511151521032780097} a - \frac{26028699171303597799569416081370474}{146787801522031612511151521032780097}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 55809266.9153 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 396 conjugacy class representatives for t20n1036 are not computed |
| Character table for t20n1036 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.109268775200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.6.5.2 | $x^{6} + 58$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 29.10.0.1 | $x^{10} + x^{2} - 2 x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $31$ | 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.8.0.1 | $x^{8} - x + 22$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |