Properties

Label 20.4.28920784535...0000.1
Degree $20$
Signature $[4, 8]$
Discriminant $2^{24}\cdot 3^{24}\cdot 5^{14}$
Root discriminant $26.49$
Ramified primes $2, 3, 5$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 20T145

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 19, -78, 231, -420, 683, -920, 610, -180, -96, 114, 292, -52, -121, -18, 42, 6, -7, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 - 7*x^18 + 6*x^17 + 42*x^16 - 18*x^15 - 121*x^14 - 52*x^13 + 292*x^12 + 114*x^11 - 96*x^10 - 180*x^9 + 610*x^8 - 920*x^7 + 683*x^6 - 420*x^5 + 231*x^4 - 78*x^3 + 19*x^2 - 2*x - 1)
 
gp: K = bnfinit(x^20 - 2*x^19 - 7*x^18 + 6*x^17 + 42*x^16 - 18*x^15 - 121*x^14 - 52*x^13 + 292*x^12 + 114*x^11 - 96*x^10 - 180*x^9 + 610*x^8 - 920*x^7 + 683*x^6 - 420*x^5 + 231*x^4 - 78*x^3 + 19*x^2 - 2*x - 1, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} - 7 x^{18} + 6 x^{17} + 42 x^{16} - 18 x^{15} - 121 x^{14} - 52 x^{13} + 292 x^{12} + 114 x^{11} - 96 x^{10} - 180 x^{9} + 610 x^{8} - 920 x^{7} + 683 x^{6} - 420 x^{5} + 231 x^{4} - 78 x^{3} + 19 x^{2} - 2 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(28920784535654400000000000000=2^{24}\cdot 3^{24}\cdot 5^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $26.49$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{381963805635106120557269} a^{19} - \frac{148588764390057011134931}{381963805635106120557269} a^{18} + \frac{39137316048822729851086}{381963805635106120557269} a^{17} - \frac{124879906440195093449478}{381963805635106120557269} a^{16} + \frac{59998003278556600834121}{381963805635106120557269} a^{15} - \frac{99913002013327529723850}{381963805635106120557269} a^{14} - \frac{87813145415239105546183}{381963805635106120557269} a^{13} + \frac{15938678427641629199142}{381963805635106120557269} a^{12} + \frac{36742697515547686089650}{381963805635106120557269} a^{11} - \frac{89904152426955892848131}{381963805635106120557269} a^{10} + \frac{122870057803011469111306}{381963805635106120557269} a^{9} + \frac{36226899254787458751424}{381963805635106120557269} a^{8} - \frac{163135610955432399157911}{381963805635106120557269} a^{7} + \frac{9299601404781680849023}{381963805635106120557269} a^{6} - \frac{53689340402673247430375}{381963805635106120557269} a^{5} + \frac{117931825741804997185614}{381963805635106120557269} a^{4} + \frac{163209664306521734223109}{381963805635106120557269} a^{3} - \frac{53487119488065020052393}{381963805635106120557269} a^{2} + \frac{100315309330056168032265}{381963805635106120557269} a - \frac{69874326403813265546729}{381963805635106120557269}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2105909.73103 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T145:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 720
The 11 conjugacy class representatives for t20n145
Character table for t20n145

Intermediate fields

\(\Q(\sqrt{5}) \), 10.2.170061120000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 6 siblings: 6.2.648000.1, 6.2.52488000.3
Degree 10 sibling: 10.2.170061120000000.1
Degree 12 siblings: 12.4.10497600000000.1, Deg 12
Degree 15 siblings: Deg 15, Deg 15
Degree 20 siblings: Deg 20, Deg 20
Degree 30 siblings: data not computed
Degree 36 sibling: data not computed
Degree 40 siblings: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.12.16$x^{8} + 24 x^{2} + 4$$4$$2$$12$$A_4\times C_2$$[2, 2]^{6}$
2.12.12.11$x^{12} - 6 x^{10} - 73 x^{8} + 140 x^{6} + 79 x^{4} - 6 x^{2} + 57$$2$$6$$12$$A_4 \times C_2$$[2, 2]^{6}$
3Data not computed
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$