Normalized defining polynomial
\( x^{20} - 8 x^{19} + 32 x^{18} - 82 x^{17} + 140 x^{16} - 156 x^{15} + 110 x^{14} - 102 x^{13} + 279 x^{12} - 524 x^{11} + 572 x^{10} - 496 x^{9} + 596 x^{8} - 1090 x^{7} + 1552 x^{6} - 1204 x^{5} + 440 x^{4} - 68 x^{3} + 12 x^{2} + 4 x - 7 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28889461328079508383727616=2^{30}\cdot 29\cdot 5519^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 29, 5519$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7} a^{14} + \frac{2}{7} a^{13} + \frac{2}{7} a^{12} + \frac{2}{7} a^{11} - \frac{3}{7} a^{10} - \frac{2}{7} a^{9} + \frac{3}{7} a^{8} + \frac{1}{7} a^{7} - \frac{2}{7} a^{6} + \frac{1}{7} a^{5} + \frac{2}{7} a^{3} + \frac{3}{7} a$, $\frac{1}{7} a^{15} - \frac{2}{7} a^{13} - \frac{2}{7} a^{12} - \frac{3}{7} a^{10} + \frac{2}{7} a^{8} + \frac{3}{7} a^{7} - \frac{2}{7} a^{6} - \frac{2}{7} a^{5} + \frac{2}{7} a^{4} + \frac{3}{7} a^{3} + \frac{3}{7} a^{2} + \frac{1}{7} a$, $\frac{1}{7} a^{16} + \frac{2}{7} a^{13} - \frac{3}{7} a^{12} + \frac{1}{7} a^{11} + \frac{1}{7} a^{10} - \frac{2}{7} a^{9} + \frac{2}{7} a^{8} + \frac{1}{7} a^{6} - \frac{3}{7} a^{5} + \frac{3}{7} a^{4} + \frac{1}{7} a^{2} - \frac{1}{7} a$, $\frac{1}{7} a^{17} - \frac{3}{7} a^{12} - \frac{3}{7} a^{11} - \frac{3}{7} a^{10} - \frac{1}{7} a^{9} + \frac{1}{7} a^{8} - \frac{1}{7} a^{7} + \frac{1}{7} a^{6} + \frac{1}{7} a^{5} - \frac{3}{7} a^{3} - \frac{1}{7} a^{2} + \frac{1}{7} a$, $\frac{1}{7} a^{18} - \frac{3}{7} a^{13} - \frac{3}{7} a^{12} - \frac{3}{7} a^{11} - \frac{1}{7} a^{10} + \frac{1}{7} a^{9} - \frac{1}{7} a^{8} + \frac{1}{7} a^{7} + \frac{1}{7} a^{6} - \frac{3}{7} a^{4} - \frac{1}{7} a^{3} + \frac{1}{7} a^{2}$, $\frac{1}{233099707033623619} a^{19} + \frac{808051977608537}{233099707033623619} a^{18} + \frac{2794924309546190}{233099707033623619} a^{17} - \frac{862582099858804}{233099707033623619} a^{16} + \frac{4836632605069493}{233099707033623619} a^{15} + \frac{8928226860031634}{233099707033623619} a^{14} + \frac{3950644272769017}{33299958147660517} a^{13} + \frac{33511987117535121}{233099707033623619} a^{12} - \frac{79562619854342222}{233099707033623619} a^{11} - \frac{108538955324618018}{233099707033623619} a^{10} + \frac{99073845940566040}{233099707033623619} a^{9} + \frac{5740766271259199}{33299958147660517} a^{8} + \frac{79567927915528994}{233099707033623619} a^{7} - \frac{92291577545464757}{233099707033623619} a^{6} - \frac{110620084504633146}{233099707033623619} a^{5} + \frac{3970361511226998}{33299958147660517} a^{4} + \frac{39382352226850592}{233099707033623619} a^{3} + \frac{78873768625407654}{233099707033623619} a^{2} + \frac{21148305778790282}{233099707033623619} a - \frac{5055123464404736}{33299958147660517}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 67624.8817862 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3932160 |
| The 506 conjugacy class representatives for t20n1015 are not computed |
| Character table for t20n1015 is not computed |
Intermediate fields
| 5.3.5519.1, 10.4.31190385664.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $20$ | $16{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5519 | Data not computed | ||||||