Normalized defining polynomial
\( x^{20} - 5 x^{18} - 2 x^{17} + 5 x^{16} + 8 x^{15} + 2 x^{14} - 16 x^{13} + 21 x^{12} + 28 x^{11} - 119 x^{10} - 150 x^{9} + 61 x^{8} + 164 x^{7} + 62 x^{6} - 4 x^{5} + 149 x^{4} + 396 x^{3} + 327 x^{2} + 58 x - 31 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28888165452349440000000000=2^{36}\cdot 3^{16}\cdot 5^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{10} a^{14} + \frac{1}{10} a^{13} - \frac{1}{2} a^{11} + \frac{1}{10} a^{10} + \frac{2}{5} a^{9} + \frac{1}{10} a^{8} + \frac{3}{10} a^{7} + \frac{3}{10} a^{6} - \frac{3}{10} a^{4} + \frac{3}{10} a^{3} - \frac{2}{5} a^{2} + \frac{1}{10} a - \frac{1}{10}$, $\frac{1}{30} a^{15} + \frac{1}{30} a^{14} - \frac{1}{6} a^{13} - \frac{7}{15} a^{11} - \frac{1}{30} a^{10} - \frac{3}{10} a^{9} + \frac{13}{30} a^{8} - \frac{2}{5} a^{7} - \frac{1}{6} a^{6} - \frac{13}{30} a^{5} - \frac{7}{30} a^{4} + \frac{11}{30} a^{3} - \frac{7}{15} a^{2} - \frac{1}{5} a + \frac{1}{6}$, $\frac{1}{30} a^{16} - \frac{2}{15} a^{13} + \frac{1}{30} a^{12} - \frac{1}{15} a^{11} + \frac{13}{30} a^{10} - \frac{7}{15} a^{9} + \frac{11}{30} a^{8} + \frac{1}{3} a^{7} - \frac{1}{6} a^{6} + \frac{1}{5} a^{5} + \frac{4}{15} a^{3} - \frac{1}{30} a^{2} + \frac{1}{15} a + \frac{2}{15}$, $\frac{1}{30} a^{17} - \frac{1}{30} a^{14} + \frac{2}{15} a^{13} - \frac{1}{15} a^{12} - \frac{1}{15} a^{11} - \frac{11}{30} a^{10} - \frac{7}{30} a^{9} + \frac{13}{30} a^{8} + \frac{2}{15} a^{7} - \frac{1}{2} a^{6} - \frac{1}{30} a^{4} + \frac{4}{15} a^{3} - \frac{1}{3} a^{2} + \frac{7}{30} a - \frac{1}{10}$, $\frac{1}{30} a^{18} - \frac{1}{30} a^{14} + \frac{1}{15} a^{13} - \frac{1}{15} a^{12} - \frac{1}{3} a^{11} - \frac{7}{15} a^{10} + \frac{1}{3} a^{9} + \frac{11}{30} a^{8} + \frac{7}{30} a^{6} - \frac{7}{15} a^{5} - \frac{11}{30} a^{4} - \frac{1}{15} a^{3} - \frac{13}{30} a^{2} + \frac{11}{30}$, $\frac{1}{16161150287147490} a^{19} - \frac{13233815721611}{3232230057429498} a^{18} + \frac{814429034923}{8080575143573745} a^{17} - \frac{284275116197}{950655899243970} a^{16} + \frac{19620830308289}{2693525047857915} a^{15} - \frac{9372384948193}{190131179848794} a^{14} - \frac{585834654182948}{2693525047857915} a^{13} - \frac{2697074332119661}{16161150287147490} a^{12} + \frac{3709842647358247}{16161150287147490} a^{11} + \frac{43497074773771}{114618087142890} a^{10} - \frac{626435324286352}{8080575143573745} a^{9} + \frac{3833432886069589}{8080575143573745} a^{8} + \frac{40556800168939}{8080575143573745} a^{7} + \frac{286985649999458}{2693525047857915} a^{6} + \frac{265406458596749}{1616115028714749} a^{5} - \frac{403204547641405}{1077410019143166} a^{4} + \frac{1598553130143121}{3232230057429498} a^{3} + \frac{81072122327407}{475327949621985} a^{2} + \frac{2270531879009167}{8080575143573745} a + \frac{2387197663651487}{16161150287147490}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 110122.225791 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 120 |
| The 7 conjugacy class representatives for $S_5$ |
| Character table for $S_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.2.214990848000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.103680.1 |
| Degree 6 sibling: | 6.2.10368000.1 |
| Degree 10 siblings: | 10.2.214990848000.1, 10.2.1343692800000.3 |
| Degree 12 sibling: | 12.4.107495424000000.1 |
| Degree 15 sibling: | 15.3.2229025112064000000.1 |
| Degree 20 siblings: | 20.0.369768517790072832000000000.1, Deg 20 |
| Degree 24 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.9 | $x^{8} + 2 x^{4} + 8 x + 12$ | $4$ | $2$ | $16$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ |
| 2.12.20.34 | $x^{12} + 14 x^{10} + 16 x^{8} - 8 x^{6} - 8 x^{4} + 16 x^{2} + 16$ | $6$ | $2$ | $20$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| $3$ | 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |