Normalized defining polynomial
\( x^{20} - 5 x^{19} - 10 x^{18} + 225 x^{17} - 835 x^{16} + 623 x^{15} + 9665 x^{14} - 65095 x^{13} + 212270 x^{12} - 167595 x^{11} - 1654471 x^{10} + 6783670 x^{9} - 12617985 x^{8} - 6471845 x^{7} + 95240190 x^{6} - 35696808 x^{5} - 334401910 x^{4} + 81011030 x^{3} + 520007480 x^{2} - 283432920 x + 293849141 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28550002061766572296619415283203125=5^{31}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{2}$, $\frac{1}{1044} a^{18} - \frac{253}{1044} a^{17} + \frac{233}{1044} a^{16} + \frac{95}{522} a^{15} + \frac{23}{261} a^{14} + \frac{41}{1044} a^{13} + \frac{31}{116} a^{12} - \frac{44}{261} a^{11} - \frac{77}{348} a^{10} + \frac{427}{1044} a^{9} + \frac{2}{29} a^{8} + \frac{17}{1044} a^{7} - \frac{151}{1044} a^{6} + \frac{25}{522} a^{5} - \frac{257}{1044} a^{4} - \frac{4}{29} a^{3} - \frac{41}{116} a^{2} - \frac{64}{261} a - \frac{13}{36}$, $\frac{1}{7207600871882907201669063888046304721870001450852788875082269925936066459425075524392} a^{19} + \frac{115192929781377244644399119144737240563895309018831220983191511023942188884015039}{1801900217970726800417265972011576180467500362713197218770567481484016614856268881098} a^{18} - \frac{8269408953687276842845980906574484845430795343430908276664467617616674528594170073}{400422270660161511203836882669239151215000080602932715282348329218670358856948640244} a^{17} + \frac{678744516507642913486809046731903396055182028575694166965537629601657752103004282099}{7207600871882907201669063888046304721870001450852788875082269925936066459425075524392} a^{16} - \frac{144945365708024377961095857571444941503167644305840260912081026595975067526179870921}{1801900217970726800417265972011576180467500362713197218770567481484016614856268881098} a^{15} + \frac{149735363787077250954136388756610681583421447888873971497578202845837777084420930449}{2402533623960969067223021296015434907290000483617596291694089975312022153141691841464} a^{14} + \frac{73636811547365596174244191284867594543077810166899199896782823608325169591617335058}{900950108985363400208632986005788090233750181356598609385283740742008307428134440549} a^{13} - \frac{3220170356411172792225586736286347186373303391373731803733814785494364462752579306995}{7207600871882907201669063888046304721870001450852788875082269925936066459425075524392} a^{12} - \frac{2450617805108869142808780085556290634658071239977744291902486549858052480421969724293}{7207600871882907201669063888046304721870001450852788875082269925936066459425075524392} a^{11} - \frac{9676481077816120138395784501656568952755615565451934900107997962741837852869025535}{62134490274852648290250550759019868291982771128041283405881637292552297064009271762} a^{10} - \frac{282201624629061372356143742211969311041513523161211570127837891751880268190386085855}{7207600871882907201669063888046304721870001450852788875082269925936066459425075524392} a^{9} - \frac{2041573097516929613897303894157162114504453142808529947811216378111965047540008134953}{7207600871882907201669063888046304721870001450852788875082269925936066459425075524392} a^{8} + \frac{309231739928277556322709140765852022773484935824767399497455470936233388223941738299}{1201266811980484533611510648007717453645000241808798145847044987656011076570845920732} a^{7} - \frac{545410645103822120756017056541113550448752307885394107570408056685593740167842401677}{2402533623960969067223021296015434907290000483617596291694089975312022153141691841464} a^{6} + \frac{2995211015623459742496548442956501448635482553567125571140995911071844643526860736103}{7207600871882907201669063888046304721870001450852788875082269925936066459425075524392} a^{5} + \frac{1660884097938735691469040258495119354562226919235790505941267107665529402023214445763}{7207600871882907201669063888046304721870001450852788875082269925936066459425075524392} a^{4} - \frac{163046626687793205993554581866436075347977416191985393245940203893020211599074136399}{800844541320323022407673765338478302430000161205865430564696658437340717713897280488} a^{3} - \frac{2501657450200524272965757670917476256633248771869411659412345514457045690380327289365}{7207600871882907201669063888046304721870001450852788875082269925936066459425075524392} a^{2} + \frac{1127707130768695105763027689389108480719721155328194939393936607911550207241083766595}{7207600871882907201669063888046304721870001450852788875082269925936066459425075524392} a + \frac{43858678253835996224883738981553864301976529725756706668614991919785628522472813287}{248537961099410593161002203036079473167931084512165133623526549170209188256037087048}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2616130963.265845 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.45125.1, 5.1.78125.1, 10.2.30517578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |