Normalized defining polynomial
\( x^{20} - 2 x^{19} - 10 x^{18} + 16 x^{17} + 80 x^{16} - 92 x^{15} - 495 x^{14} + 348 x^{13} + 2239 x^{12} - 334 x^{11} - 6224 x^{10} - 2614 x^{9} + 7713 x^{8} + 6774 x^{7} - 1414 x^{6} - 1642 x^{5} + 2469 x^{4} + 3124 x^{3} + 1831 x^{2} + 780 x + 169 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(281124869512857892173749682176=2^{20}\cdot 401^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{13} a^{17} - \frac{3}{13} a^{16} - \frac{4}{13} a^{15} - \frac{2}{13} a^{14} + \frac{5}{13} a^{13} + \frac{1}{13} a^{12} + \frac{3}{13} a^{9} + \frac{1}{13} a^{8} - \frac{2}{13} a^{7} + \frac{4}{13} a^{6} - \frac{6}{13} a^{5} + \frac{6}{13} a^{4} + \frac{5}{13} a^{3} - \frac{4}{13} a^{2} + \frac{5}{13} a$, $\frac{1}{13} a^{18} - \frac{1}{13} a^{15} - \frac{1}{13} a^{14} + \frac{3}{13} a^{13} + \frac{3}{13} a^{12} + \frac{3}{13} a^{10} - \frac{3}{13} a^{9} + \frac{1}{13} a^{8} - \frac{2}{13} a^{7} + \frac{6}{13} a^{6} + \frac{1}{13} a^{5} - \frac{3}{13} a^{4} - \frac{2}{13} a^{3} + \frac{6}{13} a^{2} + \frac{2}{13} a$, $\frac{1}{213516530520000845580617158569} a^{19} - \frac{6794984275769785800386745397}{213516530520000845580617158569} a^{18} + \frac{2158060777502045039665413490}{213516530520000845580617158569} a^{17} - \frac{50855344085524234617332855797}{213516530520000845580617158569} a^{16} - \frac{42642787826797955247309954299}{213516530520000845580617158569} a^{15} - \frac{37504781370713042633665597468}{213516530520000845580617158569} a^{14} + \frac{100038763218620637490255295984}{213516530520000845580617158569} a^{13} + \frac{5645274259012949050232660183}{16424348501538526583124396813} a^{12} - \frac{1121998748133479066183410193}{71172176840000281860205719523} a^{11} - \frac{11500303338626869167913595152}{213516530520000845580617158569} a^{10} - \frac{25132812205934866151612271840}{71172176840000281860205719523} a^{9} - \frac{77873095343805546508772535991}{213516530520000845580617158569} a^{8} - \frac{42288628177747556204219149612}{213516530520000845580617158569} a^{7} + \frac{31489630218721276262310262733}{213516530520000845580617158569} a^{6} + \frac{84139526633700603270142215130}{213516530520000845580617158569} a^{5} - \frac{4799529030678925631174833754}{71172176840000281860205719523} a^{4} + \frac{17855822842466338554632027104}{71172176840000281860205719523} a^{3} - \frac{26415127239273389647114081196}{213516530520000845580617158569} a^{2} - \frac{1334345080630788777025685125}{16424348501538526583124396813} a + \frac{478032620645225452728271091}{1263411423195271275624953601}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16225195.8275 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 277 conjugacy class representatives for t20n848 are not computed |
| Character table for t20n848 is not computed |
Intermediate fields
| 5.5.160801.1, 10.8.26477528679424.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 401 | Data not computed | ||||||