\\ Pari/GP code for working with number field 20.4.281124869512857892173749682176.11. \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^20 - 10*y^19 + 62*y^18 - 256*y^17 + 783*y^16 - 1774*y^15 + 2925*y^14 - 3038*y^13 + 372*y^12 + 5766*y^11 - 13472*y^10 + 18618*y^9 - 17947*y^8 + 12464*y^7 - 6281*y^6 + 2078*y^5 + 48*y^4 - 684*y^3 + 487*y^2 - 164*y + 23, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: \\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^20 - 10*x^19 + 62*x^18 - 256*x^17 + 783*x^16 - 1774*x^15 + 2925*x^14 - 3038*x^13 + 372*x^12 + 5766*x^11 - 13472*x^10 + 18618*x^9 - 17947*x^8 + 12464*x^7 - 6281*x^6 + 2078*x^5 + 48*x^4 - 684*x^3 + 487*x^2 - 164*x + 23, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(L)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])