Normalized defining polynomial
\( x^{20} - 8 x^{19} + 34 x^{18} - 84 x^{17} + 163 x^{16} - 278 x^{15} + 628 x^{14} - 1534 x^{13} + 2066 x^{12} + 4628 x^{11} - 19252 x^{10} + 2902 x^{9} + 45115 x^{8} - 3726 x^{7} - 52142 x^{6} - 16278 x^{5} + 30201 x^{4} + 13856 x^{3} - 14638 x^{2} - 4320 x + 3251 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(274167030311132856320000000000000=2^{30}\cdot 5^{13}\cdot 3803^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3803$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{17} - \frac{1}{3} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{1162413697151646545330913451967762324223534183} a^{19} + \frac{168735012904763205709033907448987832602763099}{1162413697151646545330913451967762324223534183} a^{18} + \frac{185845579663093255625210649623911646885116038}{387471232383882181776971150655920774741178061} a^{17} + \frac{180037102833729306145423138584827079708763088}{1162413697151646545330913451967762324223534183} a^{16} - \frac{142428801203726450788120700712753522676348808}{1162413697151646545330913451967762324223534183} a^{15} + \frac{166474686696944649685486504527061060860691640}{1162413697151646545330913451967762324223534183} a^{14} - \frac{62027667125515761064313653527480699139012555}{387471232383882181776971150655920774741178061} a^{13} + \frac{111496042822052365059118116216756651390754448}{387471232383882181776971150655920774741178061} a^{12} + \frac{352811061070741371324360960577558119224262599}{1162413697151646545330913451967762324223534183} a^{11} + \frac{324240039185932366391617947917519558289168935}{1162413697151646545330913451967762324223534183} a^{10} - \frac{155112467715193473423071318064250271718111547}{387471232383882181776971150655920774741178061} a^{9} + \frac{477098871840358759635586431156635607800507924}{1162413697151646545330913451967762324223534183} a^{8} + \frac{430435264506318658443924371139282938774517631}{1162413697151646545330913451967762324223534183} a^{7} - \frac{42540680426627525266527294174193481032638974}{1162413697151646545330913451967762324223534183} a^{6} + \frac{89147958941344874193359145807831294713623950}{387471232383882181776971150655920774741178061} a^{5} - \frac{75219589462794843262751255941560961094560393}{1162413697151646545330913451967762324223534183} a^{4} + \frac{93558264626913258167240042255241140108190069}{387471232383882181776971150655920774741178061} a^{3} - \frac{192278392883993549970131906733853859868098672}{387471232383882181776971150655920774741178061} a^{2} - \frac{231476255489831718035655641046115180173061108}{1162413697151646545330913451967762324223534183} a - \frac{58832863458111595855072178905082377036251734}{387471232383882181776971150655920774741178061}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 181736266.01 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n790 are not computed |
| Character table for t20n790 is not computed |
Intermediate fields
| 5.3.19015.1, 10.6.46280988800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 3803 | Data not computed | ||||||