Properties

Label 20.4.27328576104...3984.1
Degree $20$
Signature $[4, 8]$
Discriminant $2^{10}\cdot 11^{16}\cdot 241^{2}$
Root discriminant $16.67$
Ramified primes $2, 11, 241$
Class number $1$
Class group Trivial
Galois group 20T751

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, -5, -3, 21, -61, 68, -65, 39, 114, -213, 157, 4, -92, 67, -1, -25, 15, -1, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 - x^18 + 15*x^17 - 25*x^16 - x^15 + 67*x^14 - 92*x^13 + 4*x^12 + 157*x^11 - 213*x^10 + 114*x^9 + 39*x^8 - 65*x^7 + 68*x^6 - 61*x^5 + 21*x^4 - 3*x^3 - 5*x^2 + 4*x + 1)
 
gp: K = bnfinit(x^20 - 2*x^19 - x^18 + 15*x^17 - 25*x^16 - x^15 + 67*x^14 - 92*x^13 + 4*x^12 + 157*x^11 - 213*x^10 + 114*x^9 + 39*x^8 - 65*x^7 + 68*x^6 - 61*x^5 + 21*x^4 - 3*x^3 - 5*x^2 + 4*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} - x^{18} + 15 x^{17} - 25 x^{16} - x^{15} + 67 x^{14} - 92 x^{13} + 4 x^{12} + 157 x^{11} - 213 x^{10} + 114 x^{9} + 39 x^{8} - 65 x^{7} + 68 x^{6} - 61 x^{5} + 21 x^{4} - 3 x^{3} - 5 x^{2} + 4 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2732857610451081915433984=2^{10}\cdot 11^{16}\cdot 241^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $16.67$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 241$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{199} a^{18} + \frac{29}{199} a^{17} + \frac{19}{199} a^{16} - \frac{12}{199} a^{15} + \frac{16}{199} a^{14} + \frac{98}{199} a^{13} - \frac{14}{199} a^{12} + \frac{96}{199} a^{11} - \frac{37}{199} a^{10} - \frac{3}{199} a^{9} - \frac{21}{199} a^{8} - \frac{89}{199} a^{7} + \frac{18}{199} a^{6} - \frac{80}{199} a^{5} + \frac{74}{199} a^{4} - \frac{82}{199} a^{3} + \frac{93}{199} a^{2} - \frac{65}{199} a + \frac{12}{199}$, $\frac{1}{17717729302176971} a^{19} + \frac{498254655978}{17717729302176971} a^{18} - \frac{7442888567031089}{17717729302176971} a^{17} + \frac{1727151346435347}{17717729302176971} a^{16} - \frac{6620768994978995}{17717729302176971} a^{15} - \frac{4356799550656785}{17717729302176971} a^{14} + \frac{3115315360586378}{17717729302176971} a^{13} - \frac{755233781237429}{17717729302176971} a^{12} - \frac{5153471646355604}{17717729302176971} a^{11} + \frac{7439927198475608}{17717729302176971} a^{10} - \frac{3674174688662925}{17717729302176971} a^{9} + \frac{213412445205356}{17717729302176971} a^{8} + \frac{5656829577018413}{17717729302176971} a^{7} + \frac{3685253906122875}{17717729302176971} a^{6} + \frac{8098632960405838}{17717729302176971} a^{5} + \frac{8675461121348348}{17717729302176971} a^{4} - \frac{5448556735774165}{17717729302176971} a^{3} - \frac{3125333470276}{89033815588829} a^{2} + \frac{6613393052888229}{17717729302176971} a - \frac{5895950242341488}{17717729302176971}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 16357.8266821 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T751:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 81920
The 332 conjugacy class representatives for t20n751 are not computed
Character table for t20n751 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.6.51660490321.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.10.4$x^{10} - 5 x^{8} + 14 x^{6} - 22 x^{4} + 17 x^{2} - 37$$2$$5$$10$$C_2 \times (C_2^4 : C_5)$$[2, 2, 2, 2]^{10}$
2.10.0.1$x^{10} - x^{3} + 1$$1$$10$$0$$C_{10}$$[\ ]^{10}$
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
241Data not computed