Normalized defining polynomial
\( x^{20} - 125 x^{18} + 7230 x^{16} - 4 x^{15} - 254260 x^{14} - 290 x^{13} + 6010785 x^{12} + 22530 x^{11} - 99761943 x^{10} - 550380 x^{9} + 1177877180 x^{8} + 5771750 x^{7} - 9777028020 x^{6} - 6751886 x^{5} + 54615375960 x^{4} - 360381720 x^{3} - 185154483860 x^{2} + 2153019700 x + 288273254476 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(27326167244611413906250000000000000000=2^{16}\cdot 5^{22}\cdot 53^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9}$, $\frac{1}{14} a^{18} - \frac{3}{14} a^{17} + \frac{1}{7} a^{15} - \frac{3}{14} a^{13} + \frac{3}{14} a^{12} - \frac{3}{14} a^{11} - \frac{3}{14} a^{10} + \frac{1}{14} a^{9} + \frac{5}{14} a^{8} + \frac{5}{14} a^{7} + \frac{1}{7} a^{6} + \frac{5}{14} a^{5} - \frac{2}{7} a^{4} - \frac{2}{7} a^{3} - \frac{3}{7} a^{2} - \frac{2}{7} a + \frac{3}{7}$, $\frac{1}{21176055205980755947948769873282362668812663413876822690432984521069319854198} a^{19} - \frac{408813465123210452689123147077643772553922631455519807837715352074240421581}{21176055205980755947948769873282362668812663413876822690432984521069319854198} a^{18} + \frac{553226029562035686240611403938253306484411708290140859321379678315958557925}{3025150743711536563992681410468908952687523344839546098633283503009902836314} a^{17} + \frac{1733136213869390801591827359192662393478911072133202945407461443773668630497}{10588027602990377973974384936641181334406331706938411345216492260534659927099} a^{16} + \frac{186360597516179920448501764999597184461180785280936473016155287550410732825}{3025150743711536563992681410468908952687523344839546098633283503009902836314} a^{15} + \frac{1803747055036439393271820430265079266931436823041644162789319922706925149592}{10588027602990377973974384936641181334406331706938411345216492260534659927099} a^{14} + \frac{865713212573038080781555851618304995899575078555462584055581884289597681735}{3529342534330125991324794978880393778135443902312803781738830753511553309033} a^{13} - \frac{1262667463804552009405952011713291575750531967847128165109749038933968079728}{10588027602990377973974384936641181334406331706938411345216492260534659927099} a^{12} + \frac{4201260572677112284287184564198125395184963945458863853837866678428974925115}{21176055205980755947948769873282362668812663413876822690432984521069319854198} a^{11} + \frac{3224447219297052907113717409988652589220815004192741817479534683468681355203}{21176055205980755947948769873282362668812663413876822690432984521069319854198} a^{10} + \frac{8999312971120373756699498757239313668198403969335009609573660632764129398959}{21176055205980755947948769873282362668812663413876822690432984521069319854198} a^{9} + \frac{4911124346224959583098136838357007883244499555844334487916783510843960281041}{10588027602990377973974384936641181334406331706938411345216492260534659927099} a^{8} + \frac{3302914687304793896626223428585839683887102078755473588340068422802046826103}{7058685068660251982649589957760787556270887804625607563477661507023106618066} a^{7} - \frac{1858328493408411561866724626946498608831832570372116846928388940733561822047}{10588027602990377973974384936641181334406331706938411345216492260534659927099} a^{6} - \frac{3641568509012956685438848764672747022199420493624140364625941559215427437701}{10588027602990377973974384936641181334406331706938411345216492260534659927099} a^{5} + \frac{353273441468187898164991204802902292578228428881926972110277629698471720179}{3529342534330125991324794978880393778135443902312803781738830753511553309033} a^{4} - \frac{995419916967626130158227099343643243110296594791664070955918555479716377624}{3529342534330125991324794978880393778135443902312803781738830753511553309033} a^{3} - \frac{718967643038849588443709225914567167587872429344939965211045595642399187697}{3529342534330125991324794978880393778135443902312803781738830753511553309033} a^{2} - \frac{2827956102167413461440565039237826341188075395273900784978207423189355076096}{10588027602990377973974384936641181334406331706938411345216492260534659927099} a + \frac{38963861011210592998413157376982087721619123651420156449549103857521961165}{1512575371855768281996340705234454476343761672419773049316641751504951418157}$
Class group and class number
Not computed
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{53}) \), \(\Q(\sqrt{265}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{53})\), 5.1.50000.1, 10.2.5227443662500000000.1, 10.2.1045488732500000000.1, 10.2.12500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| $53$ | 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 53.8.4.1 | $x^{8} + 101124 x^{4} - 148877 x^{2} + 2556515844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 53.8.4.1 | $x^{8} + 101124 x^{4} - 148877 x^{2} + 2556515844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |