Normalized defining polynomial
\( x^{20} - x^{19} - 3 x^{18} - 9 x^{17} - 71 x^{16} - 102 x^{15} + 558 x^{14} + 2171 x^{13} + 869 x^{12} - 6959 x^{11} - 12462 x^{10} - 6555 x^{9} + 3087 x^{8} + 6372 x^{7} + 2094 x^{6} - 2391 x^{5} - 1477 x^{4} + 455 x^{3} + 307 x^{2} - 72 x - 37 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26913925303086389023951462924288=2^{16}\cdot 17^{8}\cdot 73^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{13} - \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{13} - \frac{1}{5} a^{12} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{5} a^{6} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{10} a^{16} - \frac{1}{10} a^{14} + \frac{2}{5} a^{13} - \frac{2}{5} a^{12} - \frac{1}{5} a^{11} - \frac{3}{10} a^{10} - \frac{1}{2} a^{8} - \frac{2}{5} a^{7} - \frac{1}{2} a^{6} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{3}{10} a^{2} + \frac{2}{5} a - \frac{1}{2}$, $\frac{1}{10} a^{17} - \frac{1}{10} a^{15} - \frac{1}{5} a^{12} + \frac{1}{10} a^{11} + \frac{1}{5} a^{10} + \frac{1}{10} a^{9} + \frac{1}{5} a^{8} - \frac{1}{10} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{3}{10} a^{3} - \frac{1}{5} a^{2} - \frac{1}{10} a + \frac{2}{5}$, $\frac{1}{1550} a^{18} + \frac{37}{1550} a^{17} + \frac{1}{31} a^{16} + \frac{7}{310} a^{15} - \frac{51}{1550} a^{14} + \frac{67}{155} a^{13} + \frac{161}{1550} a^{12} - \frac{461}{1550} a^{11} - \frac{61}{775} a^{10} + \frac{353}{1550} a^{9} + \frac{239}{775} a^{8} - \frac{9}{62} a^{7} + \frac{43}{1550} a^{6} - \frac{257}{775} a^{5} - \frac{287}{1550} a^{4} + \frac{153}{310} a^{3} + \frac{252}{775} a^{2} + \frac{277}{1550} a - \frac{239}{1550}$, $\frac{1}{936819491109997278808926050} a^{19} - \frac{263473650981816380844631}{936819491109997278808926050} a^{18} + \frac{19472638647505782858407807}{468409745554998639404463025} a^{17} - \frac{4055073272625461269243018}{93681949110999727880892605} a^{16} + \frac{16410454053222397021868509}{936819491109997278808926050} a^{15} + \frac{78145641003212299362741263}{936819491109997278808926050} a^{14} + \frac{316046127883927675224515461}{936819491109997278808926050} a^{13} - \frac{235773436921430984569309879}{936819491109997278808926050} a^{12} - \frac{5302698154368984565891102}{468409745554998639404463025} a^{11} - \frac{153024268652284434514019558}{468409745554998639404463025} a^{10} + \frac{74954176684531502356096727}{468409745554998639404463025} a^{9} - \frac{6491559840557218243862867}{468409745554998639404463025} a^{8} - \frac{145973343202828013286044487}{936819491109997278808926050} a^{7} + \frac{156002617610650296230967697}{936819491109997278808926050} a^{6} + \frac{58059340900627742371224627}{187363898221999455761785210} a^{5} + \frac{382523057279329067387454211}{936819491109997278808926050} a^{4} + \frac{129163391606986898226916092}{468409745554998639404463025} a^{3} - \frac{1104664604894942981386958}{18736389822199945576178521} a^{2} - \frac{37595095247022899222047243}{187363898221999455761785210} a - \frac{442646804108624534828600383}{936819491109997278808926050}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 81811654.3165 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 188 conjugacy class representatives for t20n968 are not computed |
| Character table for t20n968 is not computed |
Intermediate fields
| 5.5.6160324.1, 10.2.37949591784976.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.6 | $x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $73$ | 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 73.6.4.2 | $x^{6} - 73 x^{3} + 58619$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 73.6.5.2 | $x^{6} - 1825$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |